Sandfly saliva provides important clues for new Leishmaniasis treatments

Aug 31, 2011

For millions of people who live under the constant threat of Leishmania infection, a new discovery by Brazilian scientists may lead to new breakthroughs, preventing these parasites from taking hold in the body or reducing the severity of infections once they occur. In a new report appearing in the Journal of Leukocyte Biology, scientists show that specific molecules found in the saliva of the sandfly—a small flying insect that is the vector for the parasite -- make it possible for Leishmania to evade neutrophils and live within human hosts. In addition to providing a new target for drug development, this discovery may lead to new tools that help doctors more accurately gauge the severity of infections.

"Neutrophils are considered the host's first line of defense against infections and have been implicated in the immunopathogenesis of , the disease caused by Leishmania," said Valeria Borges, a Brazilian researcher involved in the work. "The identification of specific key factors from neutrophils linked to human visceral leishmaniasis immunopathogenesis can lead to the description of potential biomarkers for disease severity."

To make their discovery, scientists studied how the sandfly (Lutzomyia longipalpis), an important vector of visceral leishmaniasis, affected the neutrophils of hosts. They found that the salivary components of the sandfly induced neutrophil death pathways including FasL-mediated and caspase-dependent apoptosis, and this event was associated with Leishmania survival inside these dying cells. According to the U.S. Centers for Disease Control and Prevention, cutaneous leishmaniasis and visceral leishmaniasis are caused by more than 20 different leishmanial species. Cutaneous leishmaniasis is the most common form of the disease and causes skin ulcers. Visceral leishmaniasis causes a systemic disease that is usually fatal without treatment. Mucocutaneous leishmaniasis is a rare but severe form affecting the nasal and oral mucosa. The disease is transmitted by the bite of sand flies, and many leishmanial species infect animals as well as humans. The distribution of the disease is world-wide, with 90 percent of cutaneous leishmaniasis cases occurring in Afghanistan, Algeria, Iran, Saudi Arabia, Syria, Brazil, Colombia, Peru, and Bolivia and 90 percent of visceral leishmaniasis cases occurring in India, Bangladesh, Nepal, Sudan, Ethiopia, and Brazil.

"We are fortunate in the United States that when most of us think of bug bites we do not have to imagine picking up a parasite that can cause open wounds or major systemic problems in our bodies," said John Wherry, Ph.D., Deputy Editor of the . "However, for the majority of the developing world this is a substantial problem and finding ways to prevent or cure this insect transmitted diseases urgent global health priority. This research report looks beyond the parasite to see what other factors facilitate its colonization. Their discovery that the sand fly's plays a critical role in the process for Leishmania should reveal new opportunities for therapeutics against this parasite."

Explore further: Improving the productivity of tropical potato cultivation

More information: Deboraci Brito Prates, Théo Araújo-Santos, Nívea Farias Luz, Bruno B. Andrade, Jaqueline França-Costa, Lilian Afonso, Jorge Clarêncio, José Carlos Miranda, Patrícia T. Bozza, George A. DosReis, Cláudia Brodskyn, Manoel Barral-Netto, Valéria de Matos Borges, and Aldina Barral. Lutzomyia longipalpis saliva drives apoptosis and enhances parasite burden in neutrophils. J Leukoc Biol September 2011 90:575-582; doi:10.1189/jlb.0211105

add to favorites email to friend print save as pdf

Related Stories

New insight in the fight against the Leishmania parasite

Oct 23, 2009

Professor Albert Descoteaux's team at Centre INRS - Institut Armand-Frappier, Canada, has gained a better understanding of how the Leishmania donovani parasite manages to outsmart the human immune system and proliferate with i ...

Dermatologists identify North Texas leishmaniasis outbreak

Sep 14, 2007

A team of dermatologists and dermatopathologists at UT Southwestern Medical Center has identified nine North Texas cases of an infectious skin disease common in South America, Mexico and in the Middle East, where it is sometimes ...

Recommended for you

Building better soybeans for a hot, dry, hungry world

11 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

11 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.