Bending light with better precision

August 15, 2011

Physicists from the University of California at San Diego (UCSD) have demonstrated a new technique to control the speed and direction of light using memory metamaterials whose properties can be repeatedly changed.

A metamaterial is a structure engineered from a variety of substances that, when put together, yield that do not exist in nature. In this experiment, the metamaterial in use is a hybrid device made of split ring resonators (SRRs) – gold rings with a chunk taken out of one side – over a thin layer of vanadium dioxide (VO2).

By applying a pulse of electricity to this SRR-VO2 hybrid, the physicists can create a temperature gradient along the device that selectively changes the way the material interacts with light – changing the light's speed and direction, for example, or how much light is reflected or absorbed at each point along the device. The material even "remembers" these changes after the voltage is removed.

In a paper published in the AIP's Applied Physics Letters, the UCSD team – in collaboration with researchers from Duke University in Durham, N.C., and the Electronics and Telecommunications Research Institute (ETRI) in South Korea – applied this gradient-producing principle to show that it's possible to modify the way that interacts with a metamaterial on the order of a single wavelength for 1-terahertz-frequency radiation.

Being able to tune metamaterial devices at this level of precision – repeatedly, as required, and after the metamaterial has been fabricated – opens the door to new techniques, including the ability to manufacture Gradient Index of Refraction (GRIN) devices, that can be used for a variety of imaging and communication technologies.

Explore further: Terahertz-controlling device is built

More information: "Reconfigurable Gradient Index Using VO2 Memory Metamaterials" is published in Applied Physics Letters.

Related Stories

Terahertz-controlling device is built

December 4, 2006

U.S. government scientists say they've built a device that can manipulate terahertz radiation, perhaps leading to new imaging and communications devices.

Team develops new metamaterial device

February 24, 2009

An engineered metamaterial proved it can function as a state-of-the-art device in the complex terahertz range of the electromagnetic spectrum, setting a standard of performance for modulating tiny waves of radiation, according ...

Flipping a photonic shock wave

November 2, 2009

A team of physicists has directly observed a reverse shock wave of light in a specially tailored structure known as a left-handed metamaterial. Although it was first predicted over forty years ago, this is the first unambiguous ...

Novel man-made material could facilitate wireless power

May 23, 2011

Electrical engineers at Duke University have determined that unique man-made materials should theoretically make it possible to improve the power transfer to small devices, such as laptops or cell phones, or ultimately to ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.