Portable, super-high-resolution 3-D imaging (w/ Video)

Aug 09, 2011 By Larry Hardesty, MIT News Office

By combining a clever physical interface with computer-vision algorithms, researchers in MIT’s Department of Brain and Cognitive Sciences have created a simple, portable imaging system that can achieve resolutions previously possible only with large and expensive lab equipment. The device could provide manufacturers with a way to inspect products too large to fit under a microscope and could also have applications in medicine, forensics and biometrics.

The heart of the system, dubbed GelSight, is a slab of transparent, synthetic rubber, one of whose sides is coated with a paint containing tiny flecks of metal. When pressed against the surface of an object, the paint-coated side of the slab deforms. Cameras mounted on the other side of the slab photograph the results, and computer-vision algorithms analyze the images.

In a 2009 paper, Edward Adelson, the John and Dorothy Wilson Professor of Vision Science and a member of the Computer Science and Artificial Intelligence Laboratory, and Micah Kimo Johnson, who was a postdoc in Adelson’s lab at the time, reported on an earlier version of GelSight, which was sensitive enough to detect the raised ink patterns on a $20 bill. At this year’s Siggraph — the premier conference on computer graphics — Adelson and Johnson, along with graduate student Alvin Raj and postdoc Forrester Cole, are presenting a new, higher-resolution version of GelSight that can register physical features less than a micrometer in depth and about two micrometers across.

This video is not supported by your browser at this time.

Moreover, because GelSight uses multiple cameras to measure the rubber’s deformation, it can produce 3-D models of an object, which can be manipulated on a computer screen for examination from multiple angles.

Traditionally, generating micrometer-scale images has required a large, expensive piece of equipment such as a confocal microscope or a white-light interferometer, which might take minutes or even hours to produce a 3-D image. Often, such a device has to be mounted on a vibration isolation table, which might consist of a granite slab held steady by shock absorbers. But Adelson and Johnson have built a prototype sensor, about the size of a soda can, which an operator can hold in one hand and which produces 3-D images almost instantly.

Adelson and Johnson are already in discussion with one major aerospace company and several manufacturers of industrial equipment, all of whom are interested in using GelSight to check the integrity of their products. The technology has also drawn the interest of experts in criminal forensics, who think that it could provide a cheap, efficient way to identify the impressions that particular guns leave on the casings of spent shells. There could also be applications in dermatology — distinguishing moles from cancerous growths — and even biometrics. The resolution provided by GelSight is much higher than is required to distinguish fingerprints, but “the fingerprinting people keep wanting to talk to us,” Adelson says, laughing.

Although GelSight’s design is simple, it addresses a fundamental difficulty in 3-D sensing. Johnson illustrates the problem with a magnified photograph of an emery board, whose surface, in close-up, looks a lot like marmalade — a seemingly gelatinous combination of reds and oranges.

“The optical property of the material is making it very complicated to see the surface structure,” Johnson says. “The light is interacting with the material. It’s going through it, because the crystals are transparent, but it’s also reflecting off of it.”

When a surface is pressed into the GelSight gel, however, the metallic paint conforms to its shape. All of a sudden, the optical properties of the surface become perfectly uniform. “Now, the surface structure is more readily visible, but it’s also measurable using some fairly standard computer-vision techniques,” Johnson explains.

GelSight grew out of a project to create tactile sensors for robots, giving them a sense of touch. But Adelson and Johnson quickly realized that their system provided much higher resolution than tactile sensing required.

Once they recognized how promising GelSight was, they decided to see how far they could push the resolution. The first order of business was to shrink the flecks of metal in the paint. “We need the pigments to be smaller than the features we want to measure,” Johnson explains. But the different reflective properties of the new pigments required the use of a different lighting scheme, and that in turn required a redesign of the computer-vision algorithm that measures surface features.

“I think it’s just a dandy thing,” says Paul Debevec, an associate professor of graphics research at the University of Southern California. “It’s absolutely amazing what they get out of it.” Debevec’s lab has been investigating the use of polarized light to compensate for the irregular reflective properties of some surfaces, but, he says, “they’re getting detail at the level that’s, for little patches, well more than an order of magnitude better than I’ve ever seen measured for these kinds of surfaces.”

As a graphics researcher, Debevec — whose PhD thesis work was the basis for the effects in the movie “The Matrix” — is particularly interested in what GelSight will reveal about the surface characteristics of human skin. “This kind of data is absolutely necessary to simulate that accurately,” Debevec says. “It’s pure gold.”

Explore further: UT Dallas professor to develop framework to protect computers' cores

Related Stories

The kids are alright

May 26, 2011

Children should be seen and not heard... who says? A Philosophy academic at The University of Nottingham is challenging the adage by teaching primary school children to argue properly.

One year of the moon in 2.5 minutes

Jun 15, 2011

We don’t always have the time or ability to see the Moon every night of the year, but this video, from the Goddard Space Flight Center Scientific Visualization Studio, uses data from the Lunar Reconnaissance Orbiter ...

Recommended for you

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Nikola
5 / 5 (1) Aug 09, 2011
AWESOME!
Mikeal
not rated yet Aug 09, 2011
Probably the most practical advancement I have seen in a while. Nice job.

More news stories

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

A homemade solar lamp for developing countries

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...