NIST achieves record-low error rate for quantum information processing with one qubit

Aug 31, 2011 By Laura Ost
Micrograph of NIST ion trap with red dot indicating where a beryllium ion hovers above the chip. The horizontal and vertical lines separate gold electrodes, which are tuned to hold the ion and generate microwave pulses to manipulate it. The chip was used in experiments demonstrating record-low error rates in quantum information processing with a single quantum bit. Credit: NIST

(PhysOrg.com) -- Thanks to advances in experimental design, physicists at the National Institute of Standards and Technology (NIST) have achieved a record-low probability of error in quantum information processing with a single quantum bit (qubit)—the first published error rate small enough to meet theoretical requirements for building viable quantum computers.

A quantum computer could potentially solve certain problems that are intractable using today's technology, even supercomputers. The NIST experiment with a single beryllium ion qubit, described in a forthcoming paper, is a milestone for simple quantum . However, a working quantum computer also will require two-qubit logic operations with comparably low error rates.

"One error per 10,000 logic operations is a commonly agreed upon target for a low enough error rate to use error correction protocols in a quantum computer," explains Kenton Brown, who led the project as a NIST postdoctoral researcher. "It is generally accepted that if error rates are above that, you will introduce more errors in your correction operations than you are able to correct. We've been able to show that we have good enough control over our single-qubit operations that our of error is 1 per 50,000 logic operations."

The NIST experiment was performed on 1,000 unique sequences of logic operations randomly selected by computer software. Sequences of 10 different lengths, ranging from one to 987 operations, were repeated 100 times each. The measured results were compared to perfect theoretical outcomes. The maximum length of the sequences was limited by the hardware used to control the experiment.

The record low error rate was made possible by two major changes in the group's experimental setup. First, scientists manipulated the ion using microwaves instead of the usual laser beams. A microwave antenna was incorporated into the ion trap, with the ion held close by, hovering 40 micrometers above the trap surface. The use of microwaves reduced errors caused by instability in laser beam pointing and power, as well as spontaneous ion emissions. Second, the ion trap was placed inside a copper vacuum chamber and cooled to 4.2 K with a helium bath to reduce errors caused by magnetic field fluctuations in the lab.

Explore further: The importance of three-way atom interactions in maintaining coherence

More information: K.R. Brown, et al. 2011. Single-qubit gate error below 10-4 in a trapped ion. Physical Review A Forthcoming. Preprint available at: arxiv.org/abs/1104.2552

Related Stories

Sustained quantum information processing demonstrated

Aug 06, 2009

Raising prospects for building a practical quantum computer, physicists at the National Institute of Standards and Technology have demonstrated sustained, reliable information processing operations on electrically ...

Two atoms entangled using microwaves for the first time

Aug 10, 2011

Physicists at the National Institute of Standards and Technology have for the first time linked the quantum properties of two separated ions (electrically charged atoms) by manipulating them with microwaves ...

Recommended for you

Controlling core switching in Pac-man disks

23 hours ago

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

World's most complex crystal simulated

23 hours ago

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge ...

Atoms queue up for quantum computer networks

23 hours ago

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guideĀ to support physicists participating in radiation dosimetry audits.

Ultrasounds dance the 'moonwalk' in new metamaterial

Dec 23, 2014

Metamaterials have extraordinary properties when it comes to diverting and controlling waves, especially sound and light: for instance, they can make an object invisible, or increase the resolving power of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.