Researchers develop “net” nanodetector

August 1, 2011 by Bob Yirka report

Bin Ding and his team of researchers at Donghua University, Shanghai, China, have developed a new method of testing for formaldehyde using an electro-spinning netting technique. The process, described in their paper published in the journal Royal Society of Chemistry (RSC) involves spinning a membrane onto a quartz crystal resulting in a net that can be used to detect formaldehyde.

Because formaldehyde is used in so many manufacturing applications, both as a means to process polymers, and as a intermediate in making many kinds of cleaning agents, (as well as a process ingredient in making many medicines) a means for measuring its concentration is needed to assure safe working conditions for those involved in the manufacture of such products. Formaldehyde is considered to be a at levels of 60-80 ppb over a half hours time, unfortunately, current methods for measuring formaldehyde levels require long time periods to get results, are not considered sensitive enough and generally cost a lot of money to make; constraints that have likely at times, put people at risk.

Now, Ding and his team have figured out a way to make a formaldehyde detector that returns results almost immediately, is far more sensitive than current methods, and can be produced relatively inexpensively. The process works by applying a polyamide (a joined by peptide bonds) membrane onto a quartz crystal microbalance (a device used to measure the mass per unit area of a ) using a special spinning technique. The result is a web coating that is able to trap formaldehyde particles making their detection relatively easy.

The web is able to trap particles because of the very small size of the web mesh (); in the study, typical sizes were 100-500nm, but the team was able to get some down to as small as 20nm.

Such technology should be adaptable, the team writes, suggesting that such nets might be made for use in very fine filters to trap all manner of airborne hazards, including microorganisms. The team plans to next turn their attention to better understanding how the webs form the way they do to see how other such other sensors or filters might actually be created.

Explore further: Chemical exposure may increase risk of ALS

More information: "Polyamide 6 composite nano-fiber/net functionalized by polyethyleneimine on quartz crystal microbalance for highly sensitive formaldehyde sensors," J. Mater. Chem., 2011, Advance Article. DOI: 10.1039/C1JM11847A

Related Stories

Chemical exposure may increase risk of ALS

April 16, 2008

Preliminary results show that a common environmental chemical may increase the risk of developing amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, according to research that will be presented at ...

Indoor plants can reduce formaldehyde levels

February 17, 2009

The toxic gas formaldehyde is contained in building materials including carpeting, curtains, plywood, and adhesives. As it is emitted from these sources, it deteriorates the air quality, which can lead to "multiple chemical ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.