Researchers develop “net” nanodetector

Aug 01, 2011 by Bob Yirka report

Bin Ding and his team of researchers at Donghua University, Shanghai, China, have developed a new method of testing for formaldehyde using an electro-spinning netting technique. The process, described in their paper published in the journal Royal Society of Chemistry (RSC) involves spinning a membrane onto a quartz crystal resulting in a net that can be used to detect formaldehyde.

Because formaldehyde is used in so many manufacturing applications, both as a means to process polymers, and as a intermediate in making many kinds of cleaning agents, (as well as a process ingredient in making many medicines) a means for measuring its concentration is needed to assure safe working conditions for those involved in the manufacture of such products. Formaldehyde is considered to be a at levels of 60-80 ppb over a half hours time, unfortunately, current methods for measuring formaldehyde levels require long time periods to get results, are not considered sensitive enough and generally cost a lot of money to make; constraints that have likely at times, put people at risk.

Now, Ding and his team have figured out a way to make a formaldehyde detector that returns results almost immediately, is far more sensitive than current methods, and can be produced relatively inexpensively. The process works by applying a polyamide (a joined by peptide bonds) membrane onto a quartz crystal microbalance (a device used to measure the mass per unit area of a ) using a special spinning technique. The result is a web coating that is able to trap formaldehyde particles making their detection relatively easy.

The web is able to trap particles because of the very small size of the web mesh (); in the study, typical sizes were 100-500nm, but the team was able to get some down to as small as 20nm.

Such technology should be adaptable, the team writes, suggesting that such nets might be made for use in very fine filters to trap all manner of airborne hazards, including microorganisms. The team plans to next turn their attention to better understanding how the webs form the way they do to see how other such other sensors or filters might actually be created.

Explore further: Atom-thick CCD could capture images: Scientists develop two-dimensional, light-sensitive material

More information: "Polyamide 6 composite nano-fiber/net functionalized by polyethyleneimine on quartz crystal microbalance for highly sensitive formaldehyde sensors," J. Mater. Chem., 2011, Advance Article. DOI: 10.1039/C1JM11847A

Related Stories

Chemical exposure may increase risk of ALS

Apr 16, 2008

Preliminary results show that a common environmental chemical may increase the risk of developing amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, according to research that will be presented at ...

Indoor plants can reduce formaldehyde levels

Feb 17, 2009

The toxic gas formaldehyde is contained in building materials including carpeting, curtains, plywood, and adhesives. As it is emitted from these sources, it deteriorates the air quality, which can lead to "multiple chemical ...

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.