Molecular chaperones traffic signaling proteins between cells in plant stem-cell maintenance pathway

Aug 25, 2011

Like all living things, plants depend for their growth and sustenance on elaborate signaling networks to maintain stem cells, cells that have an almost magical regenerative capacity. The signals sent through these networks convey an incredible diversity of instructions, which make it possible for plants to follow genetic and cellular programs regulating growth, shape, and energy production and consumption.

A team of plant biologists at Cold Spring Harbor Laboratory (CSHL) led by Professor David Jackson has pioneered the use of genetics to discover how plants cells communicate certain instructions from one to another via tiny channels called plasmodesmata (PD). Having previously demonstrated that a protein called KNOTTED1 (KN1) traffics selectively through these channels, the team has now discovered that proteins called chaperonins are an indispensable factor in enabling this trafficking to occur.

The scientists have also demonstrated the importance of this specific signaling pathway, showing that it is needed to maintain stem cells, and suggest it is probably conserved broadly, in diverse species. The findings appear August 26 in the journal Science.

Plasmodesmata are microscopic channels traversing that connect adjacent cells. This is where their resemblance to, say, pipes connecting your water tank to your shower ceases, however, because PDs are selective. Only certain signaling molecules, or molecular complexes, can enter these channels and emerge properly on the far side.

The discovery that trafficking cannot occur in a PD-mobile protein such as KN1 unless it is facilitated by chaperonins, opened the question of what the latter actually do in the process. Chaperonins are protein complexes well known to assist in the folding of newly manufactured amino-acid chains into proteins. Like intricate pieces of origami, nascent proteins become functional only if they are twisted and folded into very specific conformations. Since changes in are related to changes in structure, it is not surprising that chaperonins, members of a larger class of folding machines called chaperones, are ubiquitous in living things.

Once Jackson's team had proven the necessity of chaperonins in KN1 trafficking, they set their sights on revealing the "how" and "why" of the relationship. In a series of experiments involving maize and Arabidopsis, a mustard plant used widely as a model for genetics research, they confirmed, first, that the entire chaperonin machinery – a protein mega-complex consisting of eight segments, or subunits – is involved in cell-to-cell trafficking of KN1.

"We could then ask questions about the mechanism involved, and about the functional importance of this trafficking to the plants," says Jackson. Through an ingenious process of elimination, he and his colleagues performed experiments showing that a portion of the chaperonin complex, called CCT8, had to be present in the "destination" cell if KN1 trafficking was to occur normally. "We inferred from our results that the chaperonin performs its role in the trafficking by refolding KN1 proteins in the destination cell. In other words, KN1 travels through the channel in a partly unfolded state."

Even more important, the team concluded that by selectively transporting KN1 and other "mobile signals" using this mechanism, plants are able to establish and maintain populations of stem cells. As Jackson's prior work has shown, this occurs, for instance, in meristems, the stem cell-rich tips of plants where new growth takes place.

Why do the signals that maintain need to be mobile? "Development is all about communication," Jackson explains. "Cells talk to each other, among other things, to influence one another. We hypothesize that the trafficking of signals like KN1 could serve to establish protein concentration gradients, an important part of the language plants use to develop and grow.

"You can think of molecules like KN1 as the 'words' in that language. The kind of information that is carried by concentrations and gradients are the rough equivalent of how the words are spoken, the intonation and emphasis."

Location-specific concentrations would correspond with specific developmental cues. Alternatively, Jackson speculates, "trafficking could be a backup mechanism to maintain the stem cell program, just as an extra hard drive backs up your computer programs and files." The team is already exploring these possibilities in its current work.

Explore further: Researchers successfully clone adult human stem cells

More information: "Chaperonins Facilitate KNOTTED1 Cell-to-Cell Trafficking and Stem Cell Function" by Xianfeng Morgan Xu, et al. appears August 26, 2011 in Science.

Related Stories

Chaperonins prompt proper protein folding -- but how?

Jan 20, 2010

In proper society of yesterday, the chaperone insured that couples maintained proper courting rituals. In biology, a group of proteins called chaperonins makes sure that proteins are folded properly to carry out their assigned ...

Scientists find stem cell switch

Jul 26, 2007

Scientists have discovered how plant stem cells in roots detect soil structure and whether it is favourable for growth.

Signal proteins for plant stem cells discovered

Mar 11, 2010

Wageningen University (The Netherlands) biochemist Dolf Weijers and his German colleagues have discovered how stem cells in a plant embryo are formed. The cells communicate with one another via the transportation of a protein, ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.