Microwaves to improve drug delivery

Aug 18, 2011

A team of Swinburne researchers has shown that low-temperature microwaves can be used to open up pores in bacterial cells, which could lead to significant improvements in the design of drug delivery systems.

The study, co-authored by Dean of Swinburne’s Faculty of Life and Social Sciences Professor Russell Crawford, has been published in Applied and Environmental Microbiology and highlighted by Microbes, both publications of the American Society of Microbiology.
 
According to Professor Crawford the research conducted by the faculty’s Nano-BioTech Group showed that, when exposed to an 18 GHz radiofrequency electromagnetic field, E. coli cells ingested sugar molecules from the solution surrounding them.
 
“This showed us that the microwave treatment was opening up in the , allowing sugar molecules to cross the cellular membrane.”
 
Scientists have long debated whether microwave frequency exposure can affect bacterial cells independent of microwave-associated temperature increases.
 
By conducting the experiments at lower peak temperatures – between 20 and 40 degrees – the researchers were able show that it was a specific bioeffect caused by the electromagnetic field exposure, rather than high temperatures, which caused changes to the bacterial cells. 
 
This also meant that the researchers were able to induce pores in the bacterial cells without causing any heat damage.  According to Professor Crawford, this has great potential for research and medical applications.
 
“For instance, the pore-forming effect could help doctors deliver antibiotics to infection sites, such as open wounds or surfaces around medical implants,” he said.
 
“By focusing microwave treatment on the site, this would open up pores in the bacterial cells allowing the drugs to enter. And because the microwave treatment would be done at a it wouldn’t damage any of the patient’s surrounding cells.”
 
While work still needs to be done to incorporate the researchers’ findings into a system, discovery of the novel pore-forming effect is a significant first step.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: The paper, Specific Electromagnetic Effects of Microwave Radiation on Escherichia coli, was authored by Yury Shamis, Dr. Alex Taube, Dr Natasa Mitik-Dineva, Professor Russell Crawford and Professor Elena Ivanova from Swinburne University of Technology and Professor Rodney Croft from the University of Wollongong.

Provided by Swinburne University of Technology

5 /5 (1 vote)

Related Stories

Anti-HIV vaginal gel promising protection in Africa, SE asia

Apr 20, 2011

A new vaginal microbicide gel and drug formulation looks promising for empowering women in developing countries to protect themselves from HIV during intercourse, without having to inform their partners, according to research ...

China to launch space station module prototype

Aug 17, 2011

China’s space program is in the news again, this time with unconfirmed reports that the Tiangong 1 space lab may be launching into orbit sometime this year – possibly later this month.  Previous ...

More evidence vitamin D boosts immune response

Jun 17, 2011

Laboratory-grown gingival cells treated with vitamin D boosted their production of an endogenous antibiotic, and killed more bacteria than untreated cells, according to a paper in the June 2011 issue of the journal Infection ...

Hot, Humid Weather Could Affect Asthma Sufferers

Jul 21, 2011

The Tristate has experienced a stint of heat waves this summer which have not only included high temperatures but also high humidity that has made the air feel like a perpetual sauna.

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.