How does microgravity affect astronauts?

Aug 04, 2011 By Melissa Beattie-Moss
How does microgravity affect astronauts?
International Space Station astronauts Mike Fincke (left) and Gennady Padalka could spend longer in space if they lost less bone. Credit: NASA

Anyone over 40 knows firsthand the effects of gravity's constant downward pull on our faces and bodies. It is an immutable force that Einstein called a “curvature of space-time” -- but the curvature caused by gravity is a little closer to home, in our very bones.

Every day, the weight of gravity compresses the sponge-like discs between our spinal vertebrae, making us up to three-quarters of an inch shorter by evening. Most of that height loss is regained while we sleep, as the discs are rehydrated, but not all, which is why our stature slowly shrinks over a lifetime.

In the weightless environment of space, are spared the bone-compressing impact of gravity?

It's a common fallacy, said Raj Acharya, head of Penn State's Department of Computer Science and Engineering, but the reality is does occur in space. “One of the most significant concerns for NASA,” he explained, “is the deterioration of bone conditions of astronauts exposed to microgravity.” In fact, bone loss is one of the two biggest health risks (radiation exposure is the other) that astronauts face.

A past research fellow at NASA and the Department of Defense, Acharya developed algorithms used to monitor bone conditions of astronauts under microgravity conditions. Microgravity -- also called zero gravity -- doesn't mean there's no pressure on our bodies, Acharya noted. Most human spaceflights take place in an orbital altitude between 120-360 miles above Earth's surface, only about 2 percent of the distance to the moon. Within that range, astronauts still are exposed to about 90 percent of the full strength of Earth's gravitational field. (If not for this constant pull of Earth's gravity, the space station and space shuttle would drift out of orbit.)

Astronauts may be nearly weightless (the simultaneous “free fall” of the spacecraft and everything within it gives the illusion of zero gravity) but they are not massless -- the mass of their bodies remains the same and it's this mass that gravity works upon. In fact, explained Acharya, astronauts lose bone mass and strength much faster in space than on Earth, since they miss the weight-bearing exercise we get from simply moving our bodies around (pushing back against gravity's resistance) on our planet's surface.
The tissue at greatest risk for astronauts is trabecular bone, the softer stuff found near joints at the end of long bones, said Acharya. “Microgravity may result in thinning of the trabecular network and result in fractures,” he said, noting that the lattice-like rods and struts in trabecular bone may become permanently thinned and weakened, making astronauts on long-duration missions very susceptible to hip and spinal fractures.

In his research, Acharya turned to fractals -- fascinating geometric patterns with repeating, self-similar patterns -- to better understand bone loss. “The trabecular bone has a honey-comb like network structure, which is why fractals are particularly good mathematical objects to model the trabecular structure,” he explained. “My research provides a mechanism for modeling the trabecular bone as a fractal. The deterioration of bone condition actually manifests itself as a change in fractal dimension.” Added Acharya, “Traditionally, only bone-mass effects were used by NASA,” whereas fractal analysis allows a more in-depth look at bone-tissue architecture in its entirety.

Now that our space program is gaining a better understanding of trabecular bone loss risks, what is being done about it? In addition to exploring the use of bone-strengthening drugs and superhero-style spacesuits that replicate , “NASA also is using counter measures such as exercise to combat the effects of microgravity on the bones of astronauts,” Acharya says.

One thing is for certain, he noted: Before we humans attempt the trip to Mars, we'll need some reliable measures to reduce the physical toll of life in space. That round-trip may take up to three years to complete and research suggests that astronauts could lose close to half their bone mass before they return.

So, Baby Boomers, take heed. The next time you're tempted to complain about sagging bodies and faces, remember that your proximity to Earth's gravitational field is (so to speak) actually your lucky break.

Explore further: Kazakh satellite to be launched into orbit

add to favorites email to friend print save as pdf

Related Stories

Sticks and stones break bones, but new study may prevent it

Dec 09, 2009

The best way to prevent a fracture is to stop bones from reaching the point where they are prone to breaking, but understanding the process of how bones form and mature has been challenging. Now researchers at the University ...

One Dose of Radiation Causes 30 Percent Spongy Bone Loss

Jul 12, 2006

Mice receiving just one therapeutic dose of radiation lost up to 39% of the spongy portion of their inner bone, reducing the inner bone’s weight bearing connections by up to 64%, researchers reported. The study, which appears ...

Recommended for you

Kazakh satellite to be launched into orbit

14 hours ago

Kazakhstan's first-ever Earth observation satellite is to be fired into orbit next week from the European spaceport in Kourou in French Guiana, launch company Arianespace said.

Habitable exoplanets are bad news for humanity

16 hours ago

Last week, scientists announced the discovery of Kepler-186f, a planet 492 light years away in the Cygnus constellation. Kepler-186f is special because it marks the first planet almost exactly the same size as Earth ...

First-of-its-kind NASA space-weather project

Apr 23, 2014

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

T2Nav
not rated yet Aug 04, 2011
That was quite painful to read. If you're in free fall, the presence of Earth's gravity field is a non-issue as far as the bones are concerned. I would like to have read more about the exercise and gravity-replicating-suits (?) being proposed.
Pete1983
not rated yet Aug 05, 2011
Agreed. The clarification of "zero-gravity" was entirely unnecessary, along with the orbits and free fall. In fact beyond mentioning the fractal based modelling of the trabecular bone, this article contains basically no "news" at all. It would be just as informative if it read "we hit fish with hammers and then looked at the bones in the hope of gaining insight into microgravity bone loss".

More news stories

Habitable exoplanets are bad news for humanity

Last week, scientists announced the discovery of Kepler-186f, a planet 492 light years away in the Cygnus constellation. Kepler-186f is special because it marks the first planet almost exactly the same size as Earth ...

Professional and amateur astronomers join forces

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

Kazakh satellite to be launched into orbit

Kazakhstan's first-ever Earth observation satellite is to be fired into orbit next week from the European spaceport in Kourou in French Guiana, launch company Arianespace said.

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...