Single microbial gene linked to increased ethanol tolerance

Aug 15, 2011 By Morgan McCorkle
Researchers at ORNL's BioEnergy Science Center have identified a single gene -- represented in this protein structure visualization -- that is responsible for ethanol tolerance in C. thermocelllum. More ethanol-tolerant strains of the microbe could boost ethanol production from woody crops. Credit: T Splettstoesser, scistyle.com

(PhysOrg.com) -- A team of researchers from the Department of Energy's BioEnergy Science Center has pinpointed a single, key gene in a microbe that could help streamline the production of biofuels from non-food sources.

Led by Steven Brown of DOE's Oak Ridge National Laboratory, the team identified a key gene responsible for ethanol tolerance in Clostridium thermocellum, a microorganism under consideration for use in a new biofuel production technique called consolidated bioprocessing, or CBP.

Current methods to make from lignocellulosic biomass -- or , for example -- require the addition of expensive enzymes to break down raw materials. In a more streamlined approach, CBP uses microorganisms that produce their own enzymes to liberate the plant's sugars and ferment them into ethanol.

"We want the microbe to make more lignocellulosic ethanol, so we're trying to understand the genetic basis behind the process," Brown said. "If we can evolve the strain to be more tolerant to ethanol, the hope is that we could make higher concentrations of ethanol, which would lower costs."

Although scientists have studied the C. thermocellum microbe for decades, the for its ability to tolerate higher concentrations of ethanol had not been determined. Earlier studies indicated that multiple genes, instead of a single allele, likely caused ethanol tolerance.

"Our results were really unexpected," Brown said. "It was deemed very unlikely to be a single gene because it's such a complex trait."

The BESC team located the single gene by sequencing the genomes of two types of C. thermocellum -- a wild-type strain as a reference and an ethanol-adapted strain. The researchers singled out a mutated gene in the ethanol-adapted strain called alcohol dehydrogenase, the final protein in the microbe's pathway for making ethanol.

"When we put this particular copy of the adhE gene into the wild type strain, we were able to generate the mutant phenotype with just this one gene," Brown said.

Further analysis including protein structural modeling provided a more complete picture of the mutant gene.

"It's a very comprehensive study," said Paul Gilna, director of BESC. "Rather than have just one technique or one approach, we were able to draw upon multiple experts within their fields to contribute a broader set of analyses. It is a great example of how a center such as BESC can apply expertise from multiple disciplines to bear on research questions such as this."

Explore further: Bioengineering study finds two-cell mouse embryos already talking about their future

More information: The team's results were published in the Proceedings of the National Academy of Sciences as "Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum." The invention is available for licensing.

Related Stories

Displacing petroleum-derived butanol with plants

Jan 08, 2009

As a chemical for industrial processes, butanol is used in everything from brake fluid, to paint thinners, to plastics. According to a University of Illinois researcher, butanol made from plant material could displace butanol ...

Recommended for you

Bitter food but good medicine from cucumber genetics

2 hours ago

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

New button mushroom varieties need better protection

6 hours ago

A working group has recently been formed to work on a better protection of button mushroom varieties. It's activities are firstly directed to generate consensus among the spawn/breeding companies to consider ...

Cataloguing 10 million human gut microbial genes

Nov 25, 2014

Over the past several years, research on bacteria in the digestive tract (gut microbiome) has confirmed the major role they play in our health. An international consortium, in which INRA participates, has developed the most ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.