Manufacturing method paves way for commercially viable quantum dot-based LEDs

Aug 31, 2011

University of Florida researchers may help resolve the public debate over America's future light source of choice: Edison's incandescent bulb or the more energy efficient compact fluorescent lamp. It could be neither.

Instead, America's future lighting needs may be supplied by a new breed of , or LED, that conjures light from the invisible world of quantum dots. According to an article in the current online issue of the journal , moving a QD LED from the lab to market is a step closer to reality thanks to a new manufacturing process pioneered by two research teams in UF's department of materials science and engineering.

"Our work paves the way to manufacture efficient and stable quantum dot-based LEDs with really low cost, which is very important if we want to see wide-spread commercial use of these LEDs in large-area, full-color flat-panel displays or as solid-state lighting sources to replace the existing incandescent and fluorescent lights," said Jiangeng Xue, the research leader and an associate professor of and engineering "Manufacturing costs will be significantly reduced for these solution-processed devices, compared to the conventional way of making semiconductor LED devices."

A significant part of the research carried out by Xue's team focused on improving existing organic LEDs. These semiconductors are multilayered structures made up of paper thin organic materials, such as polymer plastics, used to light up display systems in computer monitors, television screens, as well as smaller devices such as MP3 players, mobile phones, watches, and other handheld electronic devices. OLEDs are also becoming more popular with manufacturers because they use less power and generate crisper, brighter images than those produced by conventional LCDs ( displays). Ultra-thin OLED panels are also used as replacements for traditional light bulbs and may be the next big thing in 3-D imaging.

Complementing Xue's team is another headed by Paul Holloway, distinguished professor of materials science and engineering at UF, which delved into , or QDs. These nano-particles are tiny crystals just a few nanometers (billionths of a meter) wide, comprised of a combination of sulfur, zinc, selenium and cadmium atoms. When excited by electricity, QDs emit an array of colored light. The individual colors vary depending on the size of the dots. Tuning, or "adjusting," the colors is achieved by controlling the size of the QDs during the synthetic process.

By integrating the work of both teams, researchers created a high-performance hybrid LED, comprised of both organic and QD-based layers. Until recently, however, engineers at UF and elsewhere have been vexed by a manufacturing problem that hindered commercial development. An industrial process known as vacuum deposition is the common way to put the necessary organic molecules in place to carry electricity into the QDs. However, a different manufacturing process called spin-coating, is used to create a very thin layer of QDs. Having to use two separate processes slows down production and drives up manufacturing costs.

According to the Nature Photonics article, UF researchers overcame this obstacle with a patented device structure that allows for depositing all the particles and molecules needed onto the LED entirely with spin-coating. Such a device structure also yields significantly improved device efficiency and lifetime compared to previously reported QD-based LED devices.

Spin-coating may not be the final manufacturing solution, however.

"In terms of actual product manufacturing, there are many other high through-put, continuous "roll-to-roll" printing or coating processes that we could use to fabricate large area displays or lighting devices," Xue said. "That will remain as a future research and development topic for the university and a start-up company, NanoPhotonica, that has licensed the technology and is in the midst of a technology development program to capitalize on the manufacturing breakthrough."

Explore further: New technique detects microscopic diabetes-related eye damage

Related Stories

Tiny particles make LED light more pleasing

May 05, 2009

(AP) -- Light-emitting diodes are prime candidates for replacing inefficient incandescent bulbs, but have a few things working against them. They can provide a pleasing warm light or they can be energy-efficient, ...

Quantum-dot LED screens may soon rival OLEDs and LCDs

Dec 13, 2010

(PhysOrg.com) -- A partnership has been formed between US, South Korean and Belgian companies to develop quantum-dot light emitting diode (QLED) displays to rival the organic light emitting diode (OLED) markets ...

High-brightness breakthrough

Jun 28, 2005

As a result of cooperation between Philips Lighting, Philips Research and Novaled have announced a new record for the efficiency of high-brightness white OLEDs, a new solid state lighting technology. OLEDs are expected to ...

Recommended for you

Robotics goes micro-scale

20 hours ago

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Vendicar_Decarian
3 / 5 (2) Sep 01, 2011
Thank God for Government funded research.
LuckyExplorer
not rated yet Sep 01, 2011
Poor article:
They just tell us "we did it", nothing else.

What about the outcome:
Costs (estimated costs reduction?)
Light quality (properties)
Efficiency
Durability
...

A manufacturing process alone does not mean that the resulting product fulfills the requirements of the market
Telekinetic
not rated yet Sep 01, 2011
It's all very exciting, and I don't mean to be a killjoy, but how safe is exposure to this type of light? What would happen if you stared at it for a prolonged period of time? I'm just a little leery since I used to paint watch face numerals with radium. Licking the paint brush to a fine point might have something to do with this goiter.

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...