Mechanism of sculpting the plasma membrane of intestinal cells identified

Aug 01, 2011

The research group of Professor Pekka Lappalainen at the Institute of Biotechnology, University of Helsinki, has identified a previously unknown mechanism which modifies the structure of plasma membranes in intestinal epithelial cells. Unlike other proteins with a similar function, the new protein – named 'Pinkbar' by the researchers - creates planar membrane sheets.

Further research investigates the potential connection of this with various intestinal disorders. The study was published in the prestigious Nature Structural & Molecular Biology journal.

A dynamic surrounds all eukaryotic cells. Membrane plasticity is essential for a number of cellular processes; changes in the structure of the plasma membrane enable cell migration, cell division, intake of nutrients and many neurobiological and immunological events.

Earlier research has shown that certain membrane-binding proteins can 'sculpt' the membrane to generate tubular structures with positive or negative curvature, and consequently induce the formation of protrusions or invaginations on the surface of the cell. These membrane-sculpting proteins are involved in various vital cellular processes and can control the shape of the plasma membrane with surprising precision. Many of them have also been linked to severe diseases such as cancer and neurological syndromes.

Identified by Anette Pykäläinen, a member of Professor Lappalainen's group who is currently finalising her dissertation, the new membrane sculpting protein has a different mechanism than other proteins studied previously. Instead of generating positive and negative curvature, the Pinkbar protein is able to produce planar membrane sheets. Lappalainen's group determined the membrane-sculpting mechanism of Pinkbar in collaboration with an American research group. In humans, Pinkbar is only found in where it may be involved in the regulation of intestinal permeability. In the future, it will be important to identify the exact physiological function of Pinkbar in intestinal and to study the possible links of this protein to various intestinal disorders.

Explore further: Genomes of malaria-carrying mosquitoes sequenced

Provided by University of Helsinki

3 /5 (2 votes)

Related Stories

Molecular motors may speed nutrient processing

May 30, 2007

Matthew Tyska, Ph.D., recalls being intrigued, from the first day of his postdoctoral fellowship in 1999, with a nearly 30-year-old photograph. It was an electron micrograph that showed the internal structures of an intestinal ...

Finding microscopic motors in the gut

Jun 28, 2007

Digestion has a previously unsuspected mechanical dimension: Vanderbilt researchers have discovered that the tiny, hair-like protrusions that line the gut are filled with millions of molecular motors that produce streams ...

Researchers uncover secrets of salmonella's stealth attack

Apr 16, 2009

A single crafty protein allows the deadly bacterium Salmonella enterica to both invade cells lining the intestine and hijack cellular functions to avoid destruction, Yale researchers report in the April 17 issue of the jo ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

20 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.