Magnetic memories manipulated by voltage, not heat

August 29, 2011

In their search for smaller, faster information-storage devices, physicists have been exploring ways to encode magnetic data using electric fields. One advantage of this voltage-induced magnet control is that less power is needed to encode information than in a traditional system.

But earlier this year, researchers reported that a key of magnetization called coercivity is not controlled by voltage at all, but rather by an unfortunate byproduct of applying to a material – that is, by . (Coercivity is the tendency of a magnetic material to resist becoming demagnetized.)

To further explore whether voltage or heating is responsible for changes to a magnet's coercivity, scientists from Tsinghua University in Beijing, China, tested three structures commonly used in magnetic memory experiments. Their verdict: It's not the heat. In a paper accepted for publication in the AIP's Journal of Applied Physics, the authors show that the voltage is directly controlling changes in the magnetic properties of all three of the tested materials.

For example, the researchers demonstrate that the effect can be turned on and off almost instantaneously, whereas the changes should lag if heat is the cause. This is a good thing for the field, since a system that produces too much heat would slow down the performance of any real-world device made from this technology.

Explore further: Towards the magnetic fridge

More information: "Switchable voltage control of the magnetic coercive field via magnetoelectric effect" by Jing Wang et al. is published in the Journal of Applied Physics.

Related Stories

Towards the magnetic fridge

April 21, 2006

Researchers at the University of Cambridge have discovered a material that gives a whole new complexion to the term 'fridge magnet'. When this alloy is placed in a magnetic field, it gets colder. Karl Sandeman and his co-workers ...

Half-a-loaf method can improve magnetic memories

August 24, 2010

Chinese scientists have shown that magnetic memory, logic and sensor cells can be made faster and more energy efficient by using an electric, not magnetic, field to flip the magnetization of the sensing layer only about halfway, ...

Progress toward terabit-rate high-density recording

September 21, 2010

Research is closing in on the next-generation of ultra-high-density magneto-optical storage devices that could store more than 6,000 Terabits (6 petabits) of data, more than 70 times the contents of the entire U.S. Library ...

Fridge magnet transformed

March 11, 2011

The ubiquitous and unremarkable magnet, BaFe12O19, is manufactured in large volumes, has the simplest crystal structure in its class, and is often seen on refrigerator doors—but it is set for an interesting future. By ...

Recommended for you

Robotic insect mimics nature's extreme moves

July 30, 2015

The concept of walking on water might sound supernatural, but in fact it is a quite natural phenomenon. Many small living creatures leverage water's surface tension to maneuver themselves around. One of the most complex maneuvers, ...

The sound of music, according to physicists

July 30, 2015

Joshua Bodon is sick of hearing "Somewhere Over the Rainbow." More specifically, he's sick of hearing one 25-second clip of the song repeated more than 550 times.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.