New laser could treat acne with telecom technology

August 31, 2011
A laser developed at the University of Michigan can selectively target and damage sebaceous glands, which are known to play a role in acne. Credit: Mohammed Islam

(PhysOrg.com) -- A laser developed at the University of Michigan is designed to melt fat without burning surrounding tissue. It could potentially be used to treat acne, researchers say.

Its 1,708-nanometer, infrared beam takes advantage of a unique wavelength that fat can absorb more efficiently than water , which makes up more than half of the human body. It can penetrate with minimal harm on its way to reach and destroy deeper pockets of fat, said Mohammed Islam, a professor of electrical engineering and internal medicine. The research is described in a paper published in Lasers in Surgery and Medicine.

The laser could treat acne by targeting the oil-producing sebaceous glands, which are known to be involved in the development of the .

"Typically it's very hard to penetrate deep enough in the skin because of , but we picked a that's tuned in to fats," Islam said.

The new laser, which is the size of a DVD player, can reach glands more than 1.5 millimeters beneath the skin.

"Acne is an extremely common condition without an ideal treatment," said Dr. Jeffrey Orringer, an associate professor of dermatology at the U-M Medical School. "This has the potential to alter sebaceous glands in the skin and thereby impact the of acne. We are quite excited about this and several other potential uses for this device."

To prevent superficial burns, the researchers found that they had to first cool the skin before treating it. They performed the experiments on human samples that had been removed due to their proximity to non-melanoma skin cancers.

The U-M team is not the first to think of this type of treatment, but they are believed to be the first to propose doing it with off-the-shelf telecommunications technology.

"Toward the middle of the last decade, there were experiments like this done using a that was pretty much the size of an entire hospital. It was an interesting result, but it wasn't a practical light source," Islam said. "I'm a fiberoptics guy. We're taking what we've known for years in that field and building a laser that's compact and economical and has real potential to make it to the marketplace."

Islam and Orringer worked on this project with professor Michael Welsh in cell and developmental biology at the Medical School, as well as graduate students and a post-doctoral fellow in the College of Engineering on this project. In October, Islam will move into a new lab at the North Campus Research Complex, which is designed to enable similar interdisciplinary collaboration.

The paper is titled "Photothermolysis of Sebaceous Glands in Human Skin Ex Vivo with a 1,708 nm Raman Fiber and Contact Cooling."

Explore further: Free-electron laser targets fat

Related Stories

Free-electron laser targets fat

April 9, 2006

Fat may have finally met its match: laser light. Researchers at the Wellman Center for Photomedicine at Massachusetts General Hospital, Harvard Medical School and the Department of Energy's Thomas Jefferson National Accelerator ...

How the drug isotretinoin zaps acne

March 3, 2008

The most potent drug available for the treatment of acne is 13-cis retinoic acid (13-cis RA; also known as isotretinoin); however, little is known about the mechanism by which it acts.

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.