Hurricane Irene: Scientists collect water quality and climate change data from huge storm

Aug 30, 2011
Storms that led to flood conditions in White Clay Creek, Pa., are a research opportunity. Credit: Stroud Water Research Center, Dave Arscott

While Hurricane Irene had officials along the East Coast preparing for mass evacuations, scientists at the Stroud Water Research Center and the University of Delaware were grabbing their best data collection tools and heading straight for the storm's path.

It was a rare opportunity for the scientists to learn more about and , as Irene threatened to be the biggest hurricane to hit the Northeastern United States since 1985.

Center scientist Anthony Aufdenkampe explains, "It rains on average once per week, or 15 percent of the year, but streams and rivers move most of their annual loads on those days.

"The bigger the storm, the greater the disproportionate load, so you might have a single 100-year storm event move 25 percent of the material for an entire decade," says Aufdenkampe.

"This is important because fresh waters and the carbon they transport play a major role in the global cycling of greenhouse gases."

Irene could reveal much about how soil erosion into rivers might eventually bury carbon and sequester it from acting as a greenhouse gas in the atmosphere.

That's a primary goal of the Christina River Basin Critical Zone Observatory (CRB-CZO), funded by a grant from the National Science Foundation (NSF). The Stroud Research Center and University of Delaware scientists are affiliated with the CRB-CZO.

The CRB-CZO is at the forefront of scientific research on integrating how human effects on the hydrologic, mineral and carbon cycles might have feedbacks to climate change.

"One of the motivations for NSF Critical Zone Observatories such as the CRB-CZO is to obtain time-continuous observations that would document and help us understand infrequent events," says Jun Abrajano of NSF's Earth Sciences Division.

"Some of these events are extreme enough to have major cumulative effects on the overall processes and fluxes in watershed systems. The track and magnitude of Hurricane Irene may prove it to be such an event."

We're hypothesizing, says Aufdenkampe, "that big storms are a major player in determining what happens to the carbon in a leaf, for example.

"Does it go back into the atmosphere or does it get buried for decades, centuries, or millennia? That's the key to global warming and climate change."

Aufdenkampe and colleagues visited sites along White Clay Creek and Brandywine Creek to set up equipment to collect floodwaters throughout the storm.

And with innovative tools developed with relatively inexpensive open-source electronic hardware, the researchers didn't have to wait around.

Engineer Steve Hicks of the Stroud Water Research Center put together automatic water samplers that may be triggered remotely via cell phone. "By watching real-time sensor data streaming to the Internet, at precisely the right moment we fill the barrels of water we need for our analyses."

"Had a storm like this hit five or ten years ago, we wouldn't have been able to gather this type of data," says Aufdenkampe.

"But now with open-source hardware and software, anything's possible. We're only limited by our imagination."

Visit the CRB-CZO website for more information.

Explore further: Likely near-simultaneous earthquakes complicate seismic hazard planning for Italy

add to favorites email to friend print save as pdf

Related Stories

Amazon River Cycles Carbon Faster than Thought

Jul 27, 2005

The rivers of South America's Amazon basin are "breathing" far harder - and cycling the greenhouse gas carbon dioxide far faster - than anyone realized. Most of the carbon being exhaled as carbon dioxide from Amazonian rivers ...

Studying rivers for clues to global carbon cycle

Feb 08, 2008

In the science world, in the media, and recently, in our daily lives, the debate continues over how carbon in the atmosphere is affecting global climate change. Studying just how carbon cycles throughout the Earth is an enormous ...

Stevens has an eye on the science of Hurricane Irene

Aug 25, 2011

While residents along the New Jersey and New York coasts rush to the store for batteries and bottled water, scientists at Stevens Institute of Technology are heading to the laboratory to help predict the impact of Hurricane ...

Recommended for you

Tropical Storm Dolly forms, threatens Mexico

40 minutes ago

Tropical Storm Dolly formed off Mexico's northeastern coast on Tuesday and headed toward landfall in Tamaulipas state, threatening to spark floods and mudslides, forecasters said.

Giant garbage patches help redefine ocean boundaries

3 hours ago

The Great Pacific Garbage Patch is an area of environmental concern between Hawaii and California where the ocean surface is marred by scattered pieces of plastic, which outweigh plankton in that part of ...

New satellite maps out Napa Valley earthquake

4 hours ago

Scientists have used a new Earth-observation satellite called Sentinel-1A to map the ground movements caused by the earthquake that shook up California's wine-producing Napa Valley on 24 August 2014.

Rainfall monitoring with mobile phones

4 hours ago

Agriculture, water resource management, drought and flood warnings, etc.: rainfall monitoring is vital in many areas. But the observation networks remain insufficient. This is not the case for antennas for ...

Seismic hazards reassessed in the Andes

4 hours ago

Although being able to predict the date on which the next big earthquake will occur is still some way off becoming a reality, it is now possible to identify the areas where they will occur. IRD researchers ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (1) Aug 31, 2011
Scientists collect water


Somehow doesn't match the excitement of the space age when scientists collected and analyzed samples from the Moon, the Sun, Mars, meteorites, asteroids, comets and even Jupiter!

How did we get to this state of affairs?

What happened?

Oliver K. Manuel