Gymnastics for robots

Aug 29, 2011
Not a Halloween decoration but a graphic representation of an algebraic equation that allows the calculation of spaces in which a robot cannot be controlled due to geometric reasons.

A current research project of the Austrian Science Fund FWF focuses on the motion safety and efficiency of robots. The objective of the research is to improve the control of robot movements with the help of new mathematical approaches. For this purpose, the primary focus lies on the identification of situations in which a collision may occur and the planning of an optimal motion path. Crucial factors for the initiation of this project were new developments in the areas of motion planning, computer-aided design and algebraic geometry. Within the framework of this project, algebraic methods for the control of robot motions are being used for the first time in combination with numeric and geometric methods.

A robot is born, so to speak, with motor skills. By way of program codes, motor skills are deposited into its microprocessor-based memory device. This is how motion patterns are defined, but they are not always safe for the environment – or for the robot itself. They also do not always live up to the users' expectations regarding the efficiency of the robot's performance. These limitations partly result from the that are chosen for the calculation of the motion patterns. It is now the aim of a research group led by Prof. Manfred Husty and Prof. Hans-Peter Schröcker at the Faculty of Civil Engineering of the University of Innsbruck to develop new approaches for more safety and efficiency.

Smooth Like a Robot

Within the framework of this project, which is supported by the Austrian Science Fund FWF, "robots" take on a quite general meaning. Be it an industrial robot or R2D2 – they all must first and foremost perform safely. "Safe means that a robot does not collide with its environment or with itself while performing its tasks. It also has to avoid what we call dangerous areas. This does not, however, involve physically present obstacles, but positions in the proximity of which the robot cannot be controlled due to geometric reasons, and thus may become dangerous. In robotics, we also call these areas singularity," explains project leader Prof. Schröcker.

Naturally, there are a number of methods available for calculating such areas and for avoiding them when programming motion patterns. However, according to Prof. Schröcker, all of these methods have one thing in common: "The methods that have been applied thus far are based on numeric calculations. These are not accurate. They also don't allow a guarantee that all dangerous areas have been considered in the calculations. Algebraic methods, however, are not only more accurate, but could also allow such a guarantee."

Roughly speaking, numerics deal with solving continuous mathematical problems by means of discretised computer calculations. Algebra, however, uses variables, which allows for more accurate and more comprehensive calculations. In recent years, algebraic methods have in fact become increasingly popular in Mechanical Sciences. And the first theoretical results for their application in the area of motion are also available. These have, however, not yet been adapted to the practical requirements of mechanical engineering. This is exactly what is being done in this current project.

The Journey is not the Destination

Developing new mathematical methods aims at ensuring not only that robots optimally avoid "dangerous" areas, but also that they carry out motion sequences as efficiently as possible; in this context, can mean "using the shortest route" or "quickly", "elegantly" and "in an energy-saving manner". When calculating the necessary paths, possible collisions and "dangerous" areas must be considered, as Prof. Schröcker explains: "The calculations can be thought of as connecting points in space by means of smooth curves which remain sufficiently far away from the areas that are to be avoided. Developing adequate methods for doing so is an essential objective of this FWF project that will combine fundamental mathematics and practical use."

Explore further: Engineers debut adhesive material based on gecko feet

Related Stories

EPA says first day of oil spill spent 'planning'

13 hours ago

On the afternoon of the largest coastal oil spill in California in 25 years, graduate student Natalie Phares quickly organized a volunteer bucket brigade to clean a beach north of Santa Barbara.

Insect mating behavior has lessons for drones

13 hours ago

Male moths locate females by navigating along the latter's pheromone (odor) plume, often flying hundreds of meters to do so. Two strategies are involved to accomplish this: males must find the outer envelope ...

Recommended for you

Cheetah robot lands the running jump (w/ Video)

May 29, 2015

In a leap for robot development, the MIT researchers who built a robotic cheetah have now trained it to see and jump over hurdles as it runs—making this the first four-legged robot to run and jump over ...

Robot swarms use collective cognition to perform tasks

May 28, 2015

The COCORO project's robot swarms not only look like schools of fish, they behave like them too. The project developed autonomous robots that interact with each other and exchange information, resulting in ...

Job-sharing with nursing robot

May 27, 2015

Given the aging of the population and the low birthrate both in Japan and elsewhere, healthcare professionals are in short supply and unevenly distributed, giving rise to a need for alternatives to humans ...

Robots can recover from damage in minutes (w/ Video)

May 27, 2015

Robots will one day provide tremendous benefits to society, such as in search and rescue missions and putting out forest fires—but not until they can learn to keep working if they become damaged.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

EWH
not rated yet Aug 29, 2011
This all sounds like a good idea, but I don't think it's that new.

Dutch researchers Karen Trovato and Leo Dorst won the '2005 Inventor of the Year' award from the New York Intellectual Property Law Association for work using a combination of Geometric Algebra and wave mechanics to plan robot motion. This is a very general method adaptable to any sort of motion or joints and complex, dynamic environments that uses analytic solutions, although it can be implemented numerically. Their work resulted in at least one patent by the Phillips company. Its roots go back nearly a quarter century: Dorst and Trovato's paper Optimal Path Planning by Cost Wave Propagation in Metric Configuration Space, was published in 1988.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.