Gemini-Scout robot likely to reach trapped miners ahead of rescuers

Aug 16, 2011
Sandia's Gemini-Scout Mine Rescue Robot is equipped to handle any number of obstacles, including rubble piles and flooded rooms, to help rescuers reach trapped miners safely and efficiently. Credit: Randy Montoya

In the first moments after a mining accident, first responders work against the clock to assess the situation and save the miners. But countless dangers lurk: poisonous gases, flooded tunnels, explosive vapors and unstable walls and roofs. Such potentially deadly conditions and unknown obstacles can slow rescue efforts to a frustrating pace.

To speed rescue efforts, engineers at Sandia National Laboratories have developed a robot that would eliminate some of the unknowns of mine rescue operations and arm first responders with the most valuable tool: information.

Sandia robotics engineers have designed the Gemini-Scout Mine Rescue Robot, which finds dangers and can provide relief to trapped miners. It’s able to navigate through 18 inches of water, crawl over boulders and rubble piles, and move in ahead of rescuers to evaluate precarious environments and help plan operations.

“We have designed this robot to go in ahead of its handlers, to assess the situation and potential hazards and allow operations to move more quickly,” said Jon Salton, Sandia engineer and project manager. “The robot is guided by remote control and is equipped with gas sensors, a thermal camera to locate survivors and another pan-and-tilt camera mounted several feet up to see the obstacles we’re facing.”

Less than four feet long and two feet tall, Gemini-Scout is nimble enough to navigate around tight corners and over safety hatches a foot high. In addition to giving rescuers an idea of what they’re headed into, the robotic scout can haul food, air packs and medicine to those trapped underground. It is equipped with two-way radios and can be configured to drag survivors to safety.

Designers built the Gemini-Scout to negotiate nearly every known mine hazard. Methane and other gases can ignite if exposed to sparks, so the electronics are housed in casings designed to withstand an explosion. “Such measures would prevent a spark from causing further destruction. While it might harm the robot, it wouldn’t create another dangerous situation for the miners or rescuers,” Salton said.

To ensure functionality in flooded tunnels, Gemini-Scout’s controls and equipment needed to be waterproof. “When we were designing a that could provide this level of assistance, we had to be aware of the pressures and gases that are often found in that environment,” said Sandia engineer Clint Hobart, who was responsible for the mechanical design and system integration. “So we had to make sure the strength of materials matched what our goals were, and we had to keep everything lightweight enough so it could navigate easily.”

In addition, engineers had to build something intuitive for new operators who need to learn the system quickly. To overcome that challenge, they used an Xbox 360 game controller to direct Gemini-Scout. “We focused a lot on usability and copied a lot of gamer interfaces so that users can pick it up pretty quickly,” said Sandia engineer Justin Garretson, the lead software developer. 

The National Institute for Occupational Safety and Health (NIOSH) provided funding for the efforts, which have been underway for the last three years. If all goes well, the Gemini-Scout could be ready to head underground by the end of next year. The team is in the final stages of licensing Gemini-Scout to a commercial robotics company, but for now, the Mine Safety and Health Administration will be the primary customer. 

“We anticipate that this technology is broad enough to be appealing to other first responders, such as police, firefighters and medical personnel,” Salton said. “Gemini-Scout could easily be fitted to handle earthquake and fire scenarios, and we think this could provide real relief in currently inaccessible situations.”

Explore further: SRI microrobots show fast-building factory approach (w/ video)

add to favorites email to friend print save as pdf

Related Stories

High-precision robots available in kit form

Jun 17, 2011

(PhysOrg.com) -- A doctoral student from EPFL's Laboratory of Robotics Systems has developed a concept for modular industrial robots, based on the technology of parallel robots, whose precision is expressed ...

Second Z plutonium 'shot' safely tests materials for NNSA

May 12, 2011

The National Nuclear Security Administration (NNSA) today announced that researchers from Sandia and Los Alamos national laboratories have completed their second experiment in the past six months at Sandia’s ...

When robots learn from our mistakes

May 26, 2011

(PhysOrg.com) -- Robots typically acquire new capacities by imitation. Now, EPFL scientists are doing the inverse -- developing machines that can learn more rapidly and outperform humans by starting from failed ...

Driving a robot from Space Station

Jun 30, 2011

(PhysOrg.com) -- Meet Justin, an android who will soon be controlled remotely by the astronauts in ESA’s Columbus laboratory on the International Space Station. With this and other intriguing experiments ...

Recommended for you

A robot dives into search for Malaysian Airlines flight

3 hours ago

In the hunt for signs of Malaysian Airlines flight MH370—which disappeared on March 8 after deviating for unknown reasons from its scheduled flight path—all eyes today turn to a company that got its start ...

Simplicity is key to co-operative robots

Apr 16, 2014

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Students turn $250 wheelchair into geo-positioning robot

Apr 16, 2014

Talk about your Craigslist finds! A team of student employees at The University of Alabama in Huntsville's Systems Management and Production Center (SMAP) combined inspiration with innovation to make a $250 ...

Using robots to study evolution

Apr 14, 2014

A new paper by OIST's Neural Computation Unit has demonstrated the usefulness of robots in studying evolution. Published in PLOS ONE, Stefan Elfwing, a researcher in Professor Kenji Doya's Unit, has succes ...

User comments : 0

More news stories

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...

Researchers uncover likely creator of Bitcoin

The primary author of the celebrated Bitcoin paper, and therefore probable creator of Bitcoin, is most likely Nick Szabo, a blogger and former George Washington University law professor, according to students ...

The importance of plumes

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...