Flight-tests autonomous multi-target, multi-user tracking capability

Aug 17, 2011 By Daniel Parry
Graphic depiction of the network sensing concept.

The Naval Research Laboratory and the Space Dynamics Laboratory (SDL) through the support of the Office of Naval Research (ONR), has shown an autonomous multi-sensor motion-tracking and interrogation system that reduces the workload for analysts by automatically finding moving objects, then presenting high-resolution images of those objects with no human input.

Intelligence, surveillance and reconnaissance (ISR) assets in the field generate vast amounts of data that can overwhelm human operators and can severely limit the ability of an analyst to generate intelligence reports in operationally relevant timeframes. This multi-user tracking capability enables the system to manage collection of imagery without continuous monitoring by a ground or airborne operator, thus requiring fewer personnel and freeing up operational assets.

"These tests display how a single imaging sensor can be used to provide imagery of multiple tracked objects," said Dr. Brian Daniel, research physicist, NRL ISR Systems and Processing Section. "A job typically requiring multiple sensors."

During , March 2011, multiple real-time tracks generated by a wide-area persistent surveillance sensor (WAPSS) were autonomously cross-cued to a high-resolution narrow field-of-view (NFOV) interrogation sensor via an airborne network. Both sensors were networked by the high-speed Tactical Reachback Extended Communications, TREC, data-link provided by the NRL Information Technology Division, Satellite and Wireless Technology Branch.

"The demonstration was a complete success," noted Dr. Michael Duncan, ONR program manager. "Not only did the network sensing demonstration achieve simultaneous real-time tracking, sensor cross cueing and inspection of multiple vehicle-sized objects, but we also showed an ability to follow smaller human-sized objects under specialized conditions."

The network sensing demonstration utilized built under other ONR sponsored programs. The interrogation sensor was the precision, jitter-stabilized EyePod developed under the Fusion, Exploitation, Algorithm, and Targeting High-Altitude Reconnaissance (FEATHAR) program. EyePod is a dual-band visible-near infrared and long-wave infrared sensor mounted inside a nine-inch gimbal pod assembly designed for small UAV platforms. The mid-wave infrared nighttime WAPSS (N-WAPSS) was chosen as the wide-area sensor, and has a 16 mega-pixel, large format camera that captures single frames at four hertz (cycles per second) and has a step-stare capability with a one hertz refresh rate.

Using precision geo-projection of the N-WAPSS imagery, all moving vehicle-size objects in the FOV were tracked in real-time. The tracks were converted to geodetic coordinates and sent via an air-based network to a cue manager system. The cue manager autonomously tasked EyePod to interrogate all selected tracks for target classification and identification.

Explore further: Reducing traffic congestion, remotely

add to favorites email to friend print save as pdf

Related Stories

ONR-guided tech tracks what's inside ships

Apr 01, 2010

The Office of Naval Research (ONR) is funding emerging technology that will allow wireless surveillance not only of ships and aircraft, but also the tracking of people and high value assets inside the ships.

Proxy Aviation Systems Unveils SkyWatcher

Jun 28, 2005

Proxy Aviation Systems recently unveiled SkyWatcher, a long endurance, low and medium altitude, multi-payload unmanned aircraft system at the Association for Unmanned Vehicle Systems International's (AUVSI) demonstration ...

Tampa Bay Becomes "Smart Bay" With Well-Placed Sensors

Aug 17, 2005

A demonstration in July in which scientists and engineers from the University of South Florida placed sophisticated, small, rugged sensors at strategic points in Tampa Bay and downloaded data from them wirelessly illustrated ...

Recommended for you

Reducing traffic congestion, remotely

50 minutes ago

At the Intelligent Transportation Systems World Congress last week, MIT researchers received one of the best-paper awards for a new system, dubbed RoadRunner, that uses GPS-style turn-by-turn directions to ...

How to print your own cell phone microscope for pennies

58 minutes ago

At one o'clock in the morning, layers of warm plastic are deposited on the platform of the 3D printer that sits on scientist Rebecca Erikson's desk. A small plastic housing, designed to fit over the end of ...

A spray-on light show on four wheels: Darkside Scientific

Sep 14, 2014

Darkside Scientific recently drew a lot of gazes its way in its video release of a car treated to the company's electroluminescent paint called LumiLor. Electroluminescence (EL) is a characteristic of a material ...

Research project on accident-avoiding vehicle concluded

Sep 12, 2014

PRORETA 3 is completed after three and a half years of research work: The comprehensive driver assistance and automated maneuver concept supports the driver in keeping the vehicle in a safe driving corridor- ...

User comments : 0