Eyes in the sky

Aug 02, 2011 By Birgit Krummheuer
25 years ago, the Halley Multicolour Camera, which was developed and built at the MPS, succeeded in taking the first picture of a comet’s nucleus. Credit: ESA, courtesy of MPAe

Dense veils of cloud over Venus, rocky barren landscapes of frozen ice on Saturn's moon Titan, white patches in the red sand of Mars – these are images of completely alien worlds. Worlds which humans cannot reach, but which they can capture in pictures with the help of space cameras on board unmanned space probes.

For 25 years, space cameras developed and built by researchers and engineers at the Max Planck Institute for Solar System Research (MPS) in Katlenburg-Lindau/Lower Saxony have been providing scientists with a glimpse into these alien worlds. And the latest news: since 16 July of this year, two cameras on board NASA’s Dawn space probe have been orbiting the Vesta asteroid, which orbits the Sun beyond the orbit of Mars in the so-called asteroid belt. It is hoped that accurate images of the surface of this cosmic rock will help scientists to unravel the history of the development of our solar system.

The success story of the camera makers from Katlenburg-Lindau starts with a comet – and a favorable constellation – because Halley’s Comet only passes Earth as close as it did in 1986 once every 76 years or so as it travels around the Sun. Reason enough for the European Space Agency ESA to greet the cosmic traveller with a kind of welcoming committee: on 14 March 1986, the space probe Giotto flew past the comet at a distance of barely 600 kilometres. Apart from other scientific instruments Giotto had on board the Halley Multicolour Camera belonging to the MPS. During the fly-by the high-precision instrument succeeded in taking the first image of a comet’s nucleus – and thus the proof that a solid nucleus is hidden in the centre of the comet's coma of gas and dust.

Since then, the MPS has provided eight further scientific missions with their vision. Five cameras from Katlenburg-Lindau are flying through space at the moment: two on board ESA’s Rosetta mission, which will reach the comet Churyumov-Gerasimenko in 2014; two aboard NASA’s Dawn probe and one aboard ESA’s Venus Express mission, which has been investigating our neighbouring planet since 2006. “Despite these years of experience, the construction of such a camera is always a challenge,” says Professor Ulrich Christensen, Director at the MPS, because although camera technology has developed significantly in recent years, the demands placed on the instruments remain huge.

The first endurance test is the rocket lift-off itself. In order to ensure that the high-precision instruments survive the powerful vibrations unscathed, they are extensively tested beforehand at the vibration test unit of the MPS: the heavy vibration block on which the engineers mount the instruments runs through several “vibration programmes” in order to simulate all aspects of the rocket lift-off. “The second big challenge for the cameras are the low temperatures and the vacuum in space,” explains Dr. Holger Sierks of the MPS, who heads the camera team for the Rosetta mission, which provided spectacular images of the Lutetia asteroid in July 2010. The instruments must function properly when they arrive at their destination even after years of deep sleep during the voyage through space. To test this, the MPS scientists simulate the conditions in space in so-called thermal vacuum chambers.

The space missions place very special demands on the cameras’ CDD chip, the electronic sensor at their heart. “For the Giotto mission the CCD technology, which is now incorporated into every digital camera, was still completely new,” says Dr. Rainer Kramm, a retired member of the MPS, who played a crucial role in the development of the Halley Multicolour Camera and numerous other cameras. This was an essential condition for operating cameras in space, because only the digital image data can be transmitted back to Earth by radio signal.

Although the resolution of the cameras which are travelling through space aboard current missions is often not significantly higher than that of commercial ones, “resolution is not everything,” says Sierks. The space probes which travel to very remote regions of our solar system can only transmit limited quantities of data back to Earth anyhow. But in terms of sensitivity, the space cameras are far superior to their terrestrial brothers. “Many of the objects which we observe have very low luminosity,” explains Sierks. The approach phase of a mission, during which the cameras are often used for the visual navigation, is particularly demanding. The cameras must be able to take pictures of the celestial body from a very great distance. The MPS cameras aboard the Rosetta space probe succeeded in making the mission’s destination comet visible from a distance of more than 150 million kilometres at the beginning of June, for example.

Moreover, the missions sometimes require very short exposure times. In 1986, Giotto hurtled past Halley’s Comet at a speed of around 250,000 kilometres per hour, for example. “It is as if you wanted to take a photo of the pilot of a jet plane as it whizzes past,” remembers Kramm. “The Dawn cameras also cope effortlessly with exposure times of a few milliseconds,” adds Andreas Nathues from the MPS, the scientific leader of the Dawn camera team.

And this makes every space camera produced at the MPS a minor work of art. Specially developed to do justice to the specific mission – and to provide fascinating glimpses into alien worlds.

Explore further: First-of-its-kind NASA space-weather project

Related Stories

The faces of Vesta (w/ video)

Jun 24, 2011

(PhysOrg.com) -- New images of the asteroid show the first surface structures and give a preview of the Dawn mission's coming months.

Fascinating images from a new world

Jul 14, 2010

The ESA space probe Rosetta flew past the Lutetia planetoid at around 6 p.m. CEST on Saturday. The OSIRIS camera system, built and developed under the direction of the Max Planck Institute for Solar System ...

Giotto’s brief encounter

Mar 10, 2006

Twenty years ago, in the night between 13 and 14 March 1986, ESA’s Giotto spacecraft encountered Comet Halley. It was ESA’s first deep space mission, and part of an ambitious international effort to solve ...

Venture to the last protoplanet

Jul 22, 2011

(PhysOrg.com) -- Max Planck scientists have front row seats in the exploration of the asteroid with two onboard cameras. The aim is to travel back in time to the origins of the solar system.

Where comets emit dust

Apr 26, 2010

Studying comets can be quite dangerous - especially from close up. Because the tiny particles of dust emitted into space from the so-called active regions on a comet's surface can damage space probes.

Recommended for you

First-of-its-kind NASA space-weather project

13 hours ago

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...

How many moons does Venus have?

20 hours ago

There are dozens upon dozens of moons in the Solar System, ranging from airless worlds like Earth's Moon to those with an atmosphere (most notably, Saturn's Titan). Jupiter and Saturn have many moons each, ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

that_guy
not rated yet Aug 02, 2011
Once space is sufficiently commercialized, parts of this article will be lifted by Kodak for their "Kodak for space" ad campaign. If Kodak is still in business by then.
LKD
not rated yet Aug 03, 2011
If Kodak is still in business by then.


They won't be.

They are being bought bit by bit for their patents. Much like Xerox and their mouse technology stolen by MS and Apple, Kodak not marketing their CCD technology is one of the greatest blunders in business.

More news stories

How many moons does Venus have?

There are dozens upon dozens of moons in the Solar System, ranging from airless worlds like Earth's Moon to those with an atmosphere (most notably, Saturn's Titan). Jupiter and Saturn have many moons each, ...

First-of-its-kind NASA space-weather project

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Imaging turns a corner

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.