Dynamic toll for smooth-flowing traffic

Aug 12, 2011

Highway traffic can flow more freely thanks to a dynamic toll. Siemens has developed a special algorithm for traffic control systems that adjusts the toll charge to the current traffic situation. In return, the system lets motorists enjoy the benefits of getting to their destinations more quickly, while also helping to prevent traffic jams and reduce fuel consumption and CO2 emissions. The first special highway lane with the innovative control system, known as the “fast lane”, is on the highway connecting Jerusalem and Tel Aviv in Israel.

Many densely populated areas have problems with traffic during peak periods. Special lanes whose use is subject to a fee are often provided to improve the flow of traffic and encourage people to form car pools or use public transportation. The greatest challenge here is the need to set the fees at a level that will ensure the lane’s capacity is sufficiently utilized and that will be prevented. Mobility has responded to this challenge by developing a traffic control system that enables a steady driving speed while ensuring optimal use of capacity. 

The system uses induction loops in the road surface to register the speed and numbers of vehicles on the free driving lanes and the fast lane. The heart of the system is a complex that uses the measured data to calculate the toll fees down to the minute. Ultimately this leads to evenly distributed traffic density on the special lane: When traffic is light, the toll fee drops, giving drivers an incentive to use the lane. When traffic gets heavier, the fee increases, which deters some drivers and thus prevents congestion. The updated toll fee is displayed on electronic traffic signs at entrances to the fast lane. For calculating the toll fee, a video system films the vehicle’s license plate number when it enters the lane. The fee can be debited from the bank accounts of drivers who have registered for this option in advance; otherwise they receive a bill. Buses and fully occupied vehicles are exempt from the toll. The fast lane is 12 kilometers long and makes it possible to cover the distance in about 12 minutes — compared to the 30 to 60 minutes the trip can take during peak hours. 

The fast lane was built by Shapir Civil & Marine Engineering Ltd., an Israeli company. And another Israeli company, R.S. Industries / Orad Group, is responsible for toll billing. From Siemens’ point of view, a very promising market for the new traffic control system is the U.S., where there are already many fast lanes in use, but so far with little flexibility of toll calculation.

Explore further: Air traffic control failure shows we need a better approach to programming

Related Stories

Satellite-Based System Charges Tolls Based on Time of Day

Feb 04, 2005

In the state of Washington, Siemens has started operating a satellite-based toll system that charges variable fees. A total of 500 drivers will be taking part in the pilot phase in the Seattle area. As is the case with the ...

Toll charges reduce travel time

Sep 07, 2007

A smart introduction of a variable toll charge, with different rates at different departure times, reduces traffic jams. Even small toll charges can exert a large effect on the total travel time, concludes Dutch researcher ...

The car 'learns' to see and understand

Sep 13, 2005

Siemens VDO Automotive presents an ergonomic network of driver assistance systems at the 61st IAA Motor Show in Frankfurt, Germany. As the volume of traffic on the road increases, will help assist drivers by warning them ...

Recommended for you

Off-road run-ins for driverless fleets

5 hours ago

Carlos Holguin from the University of Rome, project coordinator with the CITYMOBIL2 project, talks about how the project is demonstrating automated road passenger transport through large and small-scale off-normal traffic ex ...

Image: View from an F-15D

7 hours ago

NASA pilot Jim Less and photographer Jim Ross pull their F-15D #897 aircraft away from a KC-135 refueling tanker. NASA is supporting the Edwards Air Force Base F-15 program with safety and photo chase expertise.

Turning traditional textiles smart

May 27, 2015

Mexican researcher Paulino Vacas Jacques invented a "motherboard" able to turn textiles smart. This technology could be included in bed sheets to measure the hours slept by a person.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.