DNA strands that select nanotubes are first step to a practical 'quantum wire'

Aug 03, 2011
Wrapped up in their work: this molecular model shows a single-strand DNA molecule (yellow ribbon) coiled around an "armchair" carbon nanotube. Credit: Roxbury, Jagota/NIST

DNA, a molecule famous for storing the genetic blueprints for all living things, can do other things as well. In a new paper, researchers at the National Institute of Standards and Technology (NIST) describe how tailored single strands of DNA can be used to purify the highly desired "armchair" form of carbon nanotubes. Armchair-form single wall carbon nanotubes are needed to make "quantum wires" for low-loss, long distance electricity transmission and wiring.

Single-wall are usually about a nanometer in diameter, but they can be millions of nanometers in length. It's as if you took a one-atom-thick sheet of , arranged in a hexagonal pattern, and curled it into a cylinder, like rolling up a piece of chicken wire. If you've tried the latter, you know that there are many possibilities, depending on how carefully you match up the edges, from neat, perfectly matched rows of hexagons ringing the cylinder, to rows that wrap in spirals at various angles—"chiralities" in chemist-speak.

Chirality plays an important role in nanotube properties. Most behave like semiconductors, but a few are metals. One special chiral form—the so-called "armchair carbon nanotube" - behaves like a pure metal and is the ideal quantum wire, according to NIST researcher Xiaomin Tu.

Armchair carbon nanotubes could revolutionize electric power systems, large and small, Tu says. Wires made from them are predicted to conduct electricity 10 times better than copper, with far less loss, at a sixth the weight. But researchers face two obstacles: producing totally pure starting samples of armchair nanotubes, and "cloning" them for mass production. The first challenge, as the authors note, has been "an elusive goal."

Separating one particular chirality of nanotube from all others starts with coating them to get them to disperse in solution, as, left to themselves, they'll clump together in a dark mass. A variety of materials have been used as dispersants, including polymers, proteins and . The NIST trick is to select a DNA strand that has a particular affinity for the desired type of nanotube. In earlier work,*** team leader Ming Zheng and colleagues demonstrated DNA strands that could select for one of the semiconductor forms of carbon nanotubes, an easier target. In this new paper, the group describes how they methodically stepped through simple mutations of the semiconductor-friendly DNA to "evolve" a pattern that preferred the metallic armchair nanotubes instead.

"We believe that what happens is that, with the right nanotube, the DNA wraps helically around the tube," explains Constantine Khripin, "and the DNA nucleotide bases can connect with each other in a way similar to how they bond in double-stranded DNA." According to Zheng, "The DNA forms this tight barrel around the nanotube. I love this idea because it's kind of a lock and key. The armchair nanotube is a key that fits inside this DNA structure—you have this kind of molecular recognition."

Once the target nanotubes are enveloped with the DNA, standard chemistry techniques such as chromatography can be used to separate them from the mix with high efficiency.

"Now that we have these pure nanotube samples," says team member Angela Hight Walker, "we can probe the underlying physics of these materials to further understand their unique properties. As an example, some optical features once thought to be indicative of metallic carbon nanotubes are not present in these armchair samples."

Explore further: Thinnest feasible nano-membrane produced

More information: J. Am. Chem. Soc., Article ASAP DOI: 10.1021/ja205407q

Provided by National Institute of Standards and Technology (NIST)

4.6 /5 (8 votes)

Related Stories

Carbon Nanotube Network Detects DNA Without Labels

Feb 03, 2006

Using a microchip device constructed with carbon nanotubes, researchers at the University of Pittsburgh and Nanomix, Inc., in Emeryville, CA, have developed a rapid method of detecting specific DNA sequences, ...

Sandia researcher examines the physics of carbon nanotubes

May 01, 2008

Carbon nanotubes, described as the reigning celebrity of the advanced materials world, are all the rage. Recently researchers at Rice University and Rensselaer Polytechnic Institute used them to make the “blackest ...

NASA Nanotechnology Comes to Market

Nov 14, 2006

Finding affordable ways to make technology available to everyone is a common challenge. Now, a researcher at NASA's Goddard Space Flight Center, Greenbelt, Md. has done that with the process that creates "nanotubes."

Cells selectively absorb short nanotubes

Mar 30, 2007

DNA-wrapped single-walled carbon nanotubes (SWCNTs) shorter than about 200 nanometers readily enter into human lung cells and so may pose an increased risk to health, according to scientists at the National ...

Nanotubes pass acid test

Jul 14, 2010

Rice University scientists have found the "ultimate" solvent for all kinds of carbon nanotubes (CNTs), a breakthrough that brings the creation of a highly conductive quantum nanowire ever closer.

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Isaacsname
not rated yet Aug 03, 2011
That is impressive, very impressive.

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...