Disordered networks synchronise faster than small world networks

Aug 18, 2011

Synchronization occurs when individual elements in a complex network behave in line with each other. This applies to real-life examples such as the way neurons fire during an epileptic seizure or the phenomenon of crickets falling into step with one another.

In this study, Carsten Grabow and colleagues from the Max Planck Institute for Dynamics and Self-Organization in Göttingen, Germany, created a model to test the speed of synchronisation of complex networks in collaboration with the Warwick Complexity Centre, UK. They tested this model using three very different oscillators acting on complex networks, which are known as Kuramoto, Rössler and pulse-coupled oscillators. As a result, for all tested networks they showed that the structure of the coupling between nodes determines the speed of synchronisation.

In short: the higher the disorder in the network, the faster the synchronisation. They subsequently verified this observation in real-life networks including an air-transported network, a social net-work and a human travel network. Given the great variety of networks used, the increase in the speed of synchronisation in line with increased disorder can be considered universal.

This result goes against previous observations, which showed that so-called small-world net-works, which consist of an intermediate structure of fully ordered and fully disordered networks, favour synchronisation. The small-world effect was famously applied to analysing social networks and gave rise to the theory that there are only six degrees of separation between people in a given country.

The authors are currently working on deriving a mathematical formula to predict which would synchronise and how fast. Such an approach would require integrating parame-ters, including the network size and typical number of links per node, as well as the spread of the disorder introduced. This work could have real-life applications, for example, in measuring the robustness of the relaxation process in gene regulatory networks.

Explore further: Designing exascale computers

More information: C. Grabow, S. Grosskinsky and M. Timme (2011). Speed of complex network synchronization. European Physical Journal B. DOI: 10.1140/epjb/e2011-20038-9

add to favorites email to friend print save as pdf

Related Stories

Quantum Communication in Random Networks

May 26, 2010

Internet, networks of connections between Hollywood actors, etc, are examples of complex networks, whose properties have been intensively studied in recent times. The small-world property (that everyone has ...

How to control complex networks

May 12, 2011

At first glance, a diagram of the complex network of genes that regulate cellular metabolism might seem hopelessly complex, and efforts to control such a system futile.

Physics rules network dynamics

Dec 11, 2009

(PhysOrg.com) -- When it comes to the workings of the Web, the brain, or a social network, physics finds universal truths.

What's the semantic organization of human language?

Aug 11, 2009

A Chinese semantic network with semantic (argument structure) annotation was built and investigated for finding its global statistical properties. The results show that semantic network is also small-world and scale-free ...

Sustainability solutions need the power of networks

Feb 21, 2011

The choices an individual makes about environmental issues are affected by family, friends and others in a person's social network. Michigan State University scientists are studying how to harness the power of social networks ...

Recommended for you

Designing exascale computers

20 hours ago

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

User comments : 0