New device exposes explosive vapors

August 15, 2011

Decades after the bullets have stopped flying, wars can leave behind a lingering danger: landmines that maim civilians and render land unusable for agriculture. Minefields are a humanitarian disaster throughout the world, and now researchers in Scotland have designed a new device that could more reliably sense explosives, helping workers to identify and deactivate unexploded mines.

The prototype sensor features a thin film of polymer whose many electrons jump into higher when exposed to light. If left alone, the electrons would eventually fall back down, re-emitting light. When the 'excited' polymer is exposed to the electron-deficient molecules that are common to many explosives, however, the molecules steal some of the polymer's electrons, and so quench the .

Other devices have used the change in a fluorescent polymer's light-emitting power to detect explosive vapors, but the Scottish team's prototype, described in the AIP's new journal AIP Advances, is the first to use a compact silicon-based micro-system to measure the change in the length of time an electron stays in the 'excited' higher .

This measurement is less affected by , such as stray light, which should make the device more reliable. It is also an example of how the complementary properties of an organic semiconductor (the polymer) and an inorganic semiconductor (the silicon) can be combined to make novel devices, the researchers write.

The team's current prototype is not yet ready for commercialization, but future work may soon see it helping to reclaim landmine-littered land.

Explore further: Scientists improve explosives detection

More information: "Ultra-portable explosives sensor based on a CMOS florescence lifetime analysis micro-system" is published in AIP Advances.

Related Stories

Scientists improve explosives detection

April 21, 2005

MIT researchers have announced a scientific breakthrough that could greatly improve explosives detection for military and civilian security applications. Scientists have developed a new polymer that greatly increases the ...

Quantum electronics: Two photons and chips

January 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons ...

Plastic laser detects tiny amounts of explosives

June 8, 2010

( -- Detecting hidden explosives is a difficult task but now researchers in the UK have developed a completely new way of detecting them, with a laser sensor capable of detecting molecules of explosives at concentrations ...

Explained: Bandgap

July 23, 2010

Why do some materials work well for making solar cells or light-emitting diodes (LEDs), while other materials don't? One key factor is having the right bandgap.

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

SLAC theorist explains quantum gravity

November 19, 2015

Our world is ruled by four fundamental forces: the gravitational pull of massive objects, the electromagnetic interaction between electric charges, the strong nuclear interaction holding atomic nuclei together and the weak ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.