A cosmic inkblot test

August 11, 2011 By Whitney Clavin
The "Dumbbell nebula," also known as Messier 27, pumps out infrared light in this image from NASA's Spitzer Space Telescope. Credit: NASA/JPL-Caltech/Harvard-Smithsonian CfA

(PhysOrg.com) -- If this were an inkblot test, you might see a bow tie or a butterfly depending on your personality. An astronomer would likely see the remains of a dying star scattered about space -- precisely what this is. NASA's Spitzer Space Telescope captured this infrared view of what's called a planetary nebula, which is a cloud of material expelled by a burnt out star, called a white dwarf. This object is named the Dumbbell nebula after its resemblance to the exercise equipment in visible-light views.

"It is interesting how different Spitzer's view of the Dumbbell looks compared to optical images," said Dr. Joseph Hora, the principal investigator of the observations from the Harvard Smithsonian Center for Astrophysics, Cambridge, Mass.

In Spitzer's infrared view, the diffuse green glow, which is brightest near the center, is probably from hot being heated by the ultraviolet light from the central white dwarf. A collection of clumps fill the central part of the nebula, and red-colored radial spokes extend well beyond. Astronomers think these features represent molecules of hydrogen gas, mixed with traces of heavier elements. Despite being broken apart by the ultraviolet light from the central white dwarf, much of this molecular material may survive intact and mix back into interstellar gas clouds, helping to fuel the next generation of stars.

Explore further: Mysterious Ring When Star Dies

Related Stories

Mysterious Ring When Star Dies

August 10, 2004

A new image from NASA's Spitzer Space Telescope shows the shimmering embers of a dying star, and in their midst a mysterious doughnut-shaped ring. "Spitzer's infrared vision has revealed what could not be seen before - ...

One Star's Life Ends With A Ring

August 19, 2004

A new image from NASA's Spitzer Space Telescope shows the shimmering embers of a dying star, and in their midst a strange doughnut-shaped ring. "Spitzer's infrared vision has revealed what could not be seen before - a massive ...

Spitzer Unveils Infant Stars in the Christmas Tree Cluster

December 22, 2005

Astronomers using NASA's Spitzer Space Telescope have given the world a spectacular new picture of a star-forming region called the "Christmas Tree Cluster," complete with first-ever views of a group of newborn stars still ...

The Colorful Demise of a Sun-Like Star

February 13, 2007

This image, taken by NASA's Hubble Space Telescope, shows the colorful "last hurrah" of a star like our Sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining ...

The Last Confessions of a Dying Star

March 4, 2008

Probing a glowing bubble of gas and dust encircling a dying star, NASA's Hubble Space Telescope reveals a wealth of previously unseen structures.

Recommended for you

Rosetta captures comet outburst

August 25, 2016

In unprecedented observations made earlier this year, Rosetta unexpectedly captured a dramatic comet outburst that may have been triggered by a landslide.

Rocky planet found orbiting habitable zone of nearest star

August 24, 2016

An international team of astronomers including Carnegie's Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

yyz
not rated yet Aug 15, 2011
Compare this IR image of M 27 to a similar scale visible-light view taken with the 8-meter Very Large Telescope: http://seds.org/m..._v_b.jpg

Notice the IR dust features seen by Spitzer are nearly invisible in the VLT view.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.