Structural consequences of nanolithography

Aug 11, 2011
Ferroelectric domains written by PFM exhibit a subtle structural distortion that can be directly observed using hard X-ray nanodiffraction microscopy.

( -- Users from the University of Wisconsin-Madison and the Center for Nanophase Materials Science, working with the X-Ray Microscopy Group, have discovered structural effects accompanying the nanoscale lithography of ferroelectric polarization domains. The results shed new light on the physics of structural changes induced during this model nanoscale lithographic process.

Developing the means to manipulate nanoscale patterns at their fundamental length scales has led to tremendous growth in the applications of scanning probe lithography. The potential of these capabilities has not yet been fully realized, in part because the large number of sometimes subtle physical processes involved have not yet been sufficiently well described. X-ray nanodiffraction microscopy performed at the Hard X-Ray was used to probe a pattern written into a ferroelectric layer by using scanning-probe ferroelectric nanolithography. This adaptation of piezoresponse force microscopy (PFM) can be used to write arbitrary nanoscale domain patterns into a ferroelectric thin film. The stable strain pattern observed shows the overall shape of the film is unchanged, but the is modified.

Modeling shows that the writing process induces a structural electromechanical response to unscreened charges at surfaces and interfaces, altering the local free energy of written ferroelectric domains.

The ferroelectric lithography approach is one of a number of emerging ways to control nanoscale with scanning probes, which in other systems also can provide control of magnetic and charge-ordered domains. The researchers found that a crystallographic distortion in the lattice of the ferroelectric Pb(Zr,Ti)O3 (PZT) thin film arises from the nanoscale electromechanical response to unscreened charges at surfaces and interfaces. The resulting increase in the free energy of written domains inferred from this poses an important limit for ferroelectric nanolithography. Based on this insight, it will be possible to extend the capability of PFM and other nanoscale patterning methods using direct local structural information.

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

More information: J. Y. Jo et al., “Structural Consequences of Ferroelectric Nanolithography,” Nano Lett., Article ASAP (Web 10.1021/nl2009873) (2011).

Related Stories

Reverse Chemical Switching of a Ferroelectric Film

Feb 25, 2009

( -- Ferroelectric materials display a spontaneous electric polarization below the Curie temperature that can be reoriented, typically by applying an electric field. In this study, researchers ...

Small and stable ferroelectric domains

Mar 28, 2011

Researchers are one step closer to figuring out a way to make nano-sized ferroelectric domains more stable, reports a new study in journal Science.

Measuring the electrical properties of nano-crystals

Oct 20, 2010

The UK's National Physical Laboratory (NPL) is working to provide more reliable measurement of the electrical properties of materials used in nanotechnology – which could lead to much more accurate devices in the future.

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...