In Brief: Bifunctional plasmonic / magnetic nanoparticles

Aug 19, 2011
Evolutional pathway from iron particle seeds with thin layers of amorphous iron oxide coating to hybrid nanoparticles composed of solid Ag nanodomains and hollow Fe3O4 nanoshells. Transmission electron microscopy (TEM) images (false colorized) and corresponding schematic illustration (silver: yellow, iron oxide: blue, iron core: black) of the hybrid particles at different stages along the reaction are highlighted on the edge. The TEM image at the center highlights Ag-Fe3O4 hybrid nanoparticles in which Ag and Fe3O4 are false colorized in orange yellow and blue, respectively. TEM analysis was done at Argonne’s Electron Microscopy Center

An amorphous-seed mediated strategy has been developed in the Center for Nanoscale Materials Nanophotonics Group at the Argonne National Laboratory for creating bifunctional nanoparticles composed of silver and iron oxide nanodomains. These hybrid particles exhibit unique optical properties due to surface plasmon resonance from the silver and superparamagnetic responses from the iron oxide.

Multicomponent hybrid can exhibit multiple functionalities for applications that are difficult (or even impossible) to achieve from single-component nanoparticles. For example, hybrid noble metal/ nanoparticles exhibit not only unique optical properties but also magnetic responses. The large-scale synthesis of such hybrid nanoparticles is a challenge.

The keys to success for the new amorphous-seed mediated strategy rely on the precise formation of thin amorphous coatings on the seed nanoparticles and strong interfacial adhesion between the two components within each particle. Such multifunctional hybrid nanoparticles are expected to be useful in surface-enhanced Raman scattering (SERS) for chemical and biological sensing, magnetic/optical dual-modal imaging, and drug delivery.

Collaborations with scientists in the X-Ray Sciences Division and the Electron Microscopy Center at Argonne National Laboratory as well as the University of Illinois enabled detailed characterization of the materials.

Explore further: Engineered proteins stick like glue—even in water

More information: S. Peng, C. Lei, Y. Ren, R. E. Cook, and Y. Sun, Angewandte Chemie International Edition, 50, 3158 (2011). DOI: 10.1002/anie.201007794

add to favorites email to friend print save as pdf

Related Stories

New Nanoparticle Structure Boosts Magnetic Properties

Dec 19, 2005

Magnetic nanoparticles have shown promise as contrast-enhancing agents for improving cancer detection using magnetic resonance imaging (MRI), as miniaturized heaters capable of killing malignant cells, and as targeted drug ...

Making Better Magnetic Nanoparticles

Dec 18, 2006

Using a polymer coating designed to resemble the outer surface of a cell membrane, a team of investigators led by Steve Armes, Ph.D., of the University of Sheffield in the United Kingdom, has created a highly stable, biocompatible ...

Labeling Cells with Magnetic Nanoparticles

Feb 20, 2007

Investigators at the German Cancer Research Center have developed silica-coated iron oxide nanoparticles that allow for cell tracking in a live animal using magnetic resonance imaging (MRI). More sensitive methods for tracking ...

Recommended for you

Engineered proteins stick like glue—even in water

Sep 21, 2014

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed ...

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

User comments : 0