Engineered bacteria mop up mercury spills

Aug 12, 2011

Thousands of tonnes of toxic mercury are released into the environment every year. Much of this collects in sediment where it is converted into toxic methyl mercury, and enters the food chain ending up in the fish we eat. New research, published in BioMed Central's open access journal BMC Biotechnology, showcases genetically engineered bacteria which are not only able to withstand high levels of mercury but are also able to mop up mercury from their surroundings.

These mercury-resistant bacteria, developed by researchers from Inter American University of Puerto Rico, Bayamon Campus, contained either the mouse gene for metallothionein or the for polyphosphate kinase. Both strains of bacteria were able to grow in very high concentrations (120µM) of mercury, and when the bacteria containing metallothionein were grown in a solution containing 24 times the dose of mercury which would kill non-resistant bacteria, they were able to remove more than 80% of it from the solution in five days.

Dr Ruiz who led the research said, "The inclusion of heavy metal scavenging molecules in bacteria provides a viable technology for mercury bioremediation. This method not only would allow us to clean up mercury spills from the environment but the high accumulation of mercury within the transgenic bacteria also provides the possibility of recycling it for further industrial applications."

Explore further: Chickens to chili peppers: Scientists search for the first genetic engineers

More information: Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase, Oscar N Ruiz, Derry Alvarez, Gloriene Gonzalez-Ruiz and Cesar Torres, BMC Biotechnology (in press)

add to favorites email to friend print save as pdf

Related Stories

Study: Mercury can travel long distances

Dec 12, 2005

University of Washington scientists say they may have determined why mercury in the atmosphere might be washed out more easily than earlier believed.

Bacterial genome may hold answers to mercury mystery

Apr 08, 2011

A newly sequenced bacterial genome from a team led by the Department of Energy's Oak Ridge National Laboratory could contain clues as to how microorganisms produce a highly toxic form of mercury.

Mercury reduction tied to emissions laws

Apr 03, 2006

Seven years after Massachusetts passed the nation's toughest mercury emission incinerator laws, mercury found in some freshwater fish is down 32 percent.

Dental chair a possible source of neurotoxic mercury waste

Mar 26, 2008

Mercury is a large component of dental fillings, but it is not believed to pose immediate health risks in that form. When exposed to sulfate-reducing bacteria, however, mercury undergoes a chemical change and becomes methylated, ...

Pennsylvania to issue new mercury limits

Feb 22, 2006

The Pennsylvania Department of Environmental Protection reportedly plans to order a substantial cut in toxic mercury emissions from coal-burning plants.

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

9 hours ago

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Building better soybeans for a hot, dry, hungry world

Apr 16, 2014

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...