Researchers find way to align gold nanorods on a large scale

August 17, 2011

Researchers from North Carolina State University have developed a simple, scalable way to align gold nanorods, particles with optical properties that could be used for emerging biomedical imaging technologies.

Aligning nanorods is important because they respond to light differently, depending on the direction in which the nanorods are pointed. To control the optical response of the nanorods, researchers want to ensure that all of the nanorods are aligned.

The NC State researchers developed a way to align the gold nanorods using electrospun "nano/microfibers." Electrospinning is a way of producing fibers, with a liquid polymer being discharged from a needle and then solidifying. The researchers produced fibers as thin as 40 nanometers (nm) in diameter and as thick as three microns in diameter – thus, nano/microfibers.

The researchers mixed the gold nanorods into the polymer solution, causing them to be incorporated directly into the polymer. The nanorods align when the fibers form. The force experienced by the as it is emitted from the electrospinning needle creates "streamlines" in the polymer solution.

"The nanorods are forced into alignment with these streamlines, like logs in a river that swing into alignment with the current," says Dr. Joe Tracy, an assistant professor of materials science and engineering at NC State and co-author of a paper describing the study. "And as the polymer solidifies, the aligned nanorods are locked into place."

"Electrospinning efforts at NC State are world-class and have yielded a wide range of novel and functional materials," adds Dr. Rich Spontak, a professor of chemical and biomolecular engineering and materials science and engineering at NC State and paper co-author. "What makes this result truly exciting is that the alignment is multiscale, or simultaneously achieved at different length scales. The nanorods are aligned at nanoscale dimensions, whereas the fibers are aligned at larger length scales."

This approach has been used in the past to align other kinds of nanorods, but this is the first time it has been done with gold nanorods. "To the best of our knowledge, this is also the first time nanorods of this size have been aligned in electrospun ," Tracy says, referring to the fact that the study focused on relatively short nanorods.

Specifically, the researchers used nanorods with an aspect ratio of 3.1. For example, that means that a nanorod measuring 10 nm wide would be 31 nm long. The nanorods in the study were approximately 49 nm long.

This aspect ratio is important, because it affects the way the nanorods interact with light – and, therefore, their .

Explore further: Gold nanorods brighten future for medical imaging

More information: The paper, "Long-Range Alignment of Gold Nanorods in Electrospun Polymer Nano/Microfibers," was published online Aug. 11 in Langmuir.

Related Stories

Gold nanorods brighten future for medical imaging

October 25, 2005

Researchers at Purdue University have taken a step toward developing a new type of ultra-sensitive medical imaging technique that works by shining a laser through the skin to detect tiny gold nanorods injected into the bloodstream.

Computer-Guided Nanoparticle Therapy Destroys Tumors

June 29, 2009

Gold nanoshells are among the most promising new nanoscale therapeutics being developed to kill tumors, acting as antennas that turn light energy into heat that cooks cancer to death. Now, a multi-institutional research team ...

High efficiency infrared photodetectors using gold nanorods

March 25, 2011

Toyohashi Tech researchers develop an innovative infrared photodetector exploiting ‘plasmon resonance’ at the surface of gold nanorods. This technology shows potential as the basis for the development of high efficiency ...

Recommended for you

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Neuromorphic computing mimics important brain feature

August 18, 2016

(Phys.org)—When you hear a sound, only some of the neurons in the auditory cortex of your brain are activated. This is because every auditory neuron is tuned to a certain range of sound, so that each neuron is more sensitive ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.