When viruses attack: Chesapeake virus activity mirrors seasonal changes, plays critical ecosystem role

Jul 19, 2011 By Elizabeth Boyle
Professor Eric Wommack and Danielle Winget have published research on viruses in the Chesapeake Bay.

The Chesapeake Bay houses a huge diversity of fish, birds, plants, and mammals. But to understand this vital habitat, University of Delaware scientists studied its tiniest inhabitants -- viruses -- and found that they play an extremely important role in the workings of the ecosystem.

The research, published in the June 24 Proceedings of the National Academy of Sciences, looked at viral lysis, the process through which viruses invade and destroy (in this case, microbes such as ). The 4.5-year study revealed that the occurrence of viral lysis on microbes follows . Particularly of interest, the researchers found that it plays a disproportionally large role in the mortality of microbes in the wintertime.

“Every year you can go back and find approximately the same proportion of bacteria being killed by viruses, and it follows these really nice seasonal patterns,” said lead author Danielle Winget. “It shows viruses are a part of this ecosystem, and they’re actually alive and interacting and following the same patterns of other living things.”

Winget, a post-doctoral fellow at the University of British Columbia, conducted the research for her doctoral dissertation at UD. Collaborating on the project was her adviser, Professor Eric Wommack, and several other members of his lab: former graduate students Rebekah Helton, Kurt Williamson and Shellie Bench, and former post-doctoral fellow Shannon Williamson.

Results from the group’s research are expected to help shape future approaches to improving health. The bay’s deep waters experience low oxygen values in the summer, a condition known as hypoxia that can lead to fish kills and other environmental problems. Hypoxia is caused by excess nutrients, often from human activities, flowing into the water and stimulating the growth of bacteria that use up all the oxygen. 

That’s why understanding the viruses that attack the bacteria is important, Wommack explained.

“Microbes are really the unsung heroes in that they maintain the nutrient balance of the ecosystem,” he said. “Understanding the mechanisms behind how communities of work is really critical ultimately to managing the bay.”

Wommack said that the new insights provided by the study were a result of it being the longest such investigation on viruses in the Chesapeake. The science team collected samples during 18 cruises over the course of the more than four-year study period and analyzed more than 1,000 independent samples.

The resulting findings will benefit our understanding of the critical coastal ecosystem of the Chesapeake Bay.

“Human beings stand on the shore of the ocean and think the ocean is so vast, and they’re right,” Wommack said. “But most of the productivity that we care about in the ocean occurs in coastal areas and those are the areas that are undergoing the greatest amount of impact from human activity.”

Explore further: Fighting bacteria—with viruses

Related Stories

Robotic glider to map Moreton Bay impacts

Jan 20, 2011

A $200,000 CSIRO coastal glider is bound for Queensland to be deployed in Moreton Bay to investigate the impact of the recent flooding on marine ecosystems.

Real-time electronic monitoring for coastal waters

Nov 01, 2010

(PhysOrg.com) -- Researchers from North Carolina State University are developing a cost-effective electronic monitoring system that will enable researchers to advance our understanding of critical coastal ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0