Vascular composites enable dynamic structural materials

July 26, 2011

Taking their cue from biological circulatory systems, University of Illinois researchers have developed vascularized structural composites, creating materials that are lightweight and strong with potential for self-healing, self-cooling, metamaterials and more.

"We can make a material now that's truly multifunctional by simply circulating fluids that do different things within the same material system," said Scott White, the Willet Professor of who led the group. "We have a vascularized structural material that can do almost anything."

are a combination of two or more materials that harness the properties of both. Composites are valued as structural materials because they can be lightweight and strong. Many composites are fiber-reinforced, made of a network of woven fibers embedded in – for example, graphite, fiberglass or Kevlar.

The Illinois team, part of the Autonomous Materials Systems Laboratory in the Beckman Institute for Advanced Science and Technology, developed a method of making fiber-reinforced composites with tiny channels for liquid or gas transport. The channels could wind through the material in one long line or branch out to form a network of capillaries, much like the vascular network in a tree.

"Trees are incredible , but they're dynamic too," said co-author Jeffrey Moore, the Murchison-Mallory professor of chemistry and a professor of materials science and engineering. "They can pump fluids, transfer mass and energy from the roots to the leaves. This is the first step to making synthetic materials that have that kind of functionality."

The key to the method, published in the journal Advanced Materials, is the use of sacrificial fibers. The team treated commercially available fibers so that they would degrade at high temperatures. The sacrificial fibers are no different from normal fibers during weaving and composite fabrication. But when the temperature is raised further, the treated fibers vaporize – leaving tiny channels in their place – without affecting the structural composite material itself.

"There have been vascular materials fabricated previously, including things that we've done, but this paper demonstrated that you can approach the manufacturing with a concept that is vastly superior in terms of scalability and commercial viability," White said.

In the paper, the researchers demonstrate four classes of application by circulating different fluids through a vascular composite: temperature regulation, chemistry, conductivity and electromagnetism. They regulate temperature by circulating coolant or a hot fluid. To demonstrate a chemical reaction, they injected chemicals into different vascular branches that merged, mixing the chemicals to produce a luminescent reaction. They made the structure electrically active by using conductive liquid, and changed its electromagnetic signature with ferrofluids – a key property for stealth applications.

Next, the researchers hope to develop interconnected networks with membranes between neighboring channels to control transport between channels. Such networks would enable many chemical and energy applications, such as self-healing polymers or fuel cells.

"This is not just another microfluidic device," said co-author Nancy Sottos, the Willett professor of science and engineering and a professor of aerospace engineering. "It's not just a widget on a chip. It's a structural material that's capable of many functions that mimic biological systems. That's a big jump."

Explore further: Crafting complex materials to solve the mystery of magnetism

More information: The paper, "Three-Dimensional Microvascular Fiber-Reinforced Composites," is available online at onlinelibrary.wiley.com/doi/10.1002/adma.201100933/pdf

Related Stories

Sandcastles of star-shaped motes are stable structures

May 11, 2016

Duke graduate student Yuchen Zhao has spent the last year studying such "sandcastles of stars"—towers crafted from hundreds of six-armed stars or "hexapods" which bear a remarkable resemblance to the jacks you might have ...

The rise and fall of Martian lakes

May 12, 2016

There is a wealth of evidence, collected over the past few decades, that suggests liquid water was abundant in the early history of Mars – one of our nearest and most studied neighbours. However, the size, evolution and ...

Solving the biomass puzzle

May 12, 2016

Biomass holds great promise as a petroleum replacement, but unlocking its true potential remains a puzzle. A group of researchers at Iowa State University and the U.S Department of Energy's Ames Laboratory hope to develop ...

The high costs of imported pests

May 12, 2016

A new analysis of the damage done by invasive forest pests shows that homeowners and local governments are being stuck with a $4.5 billion yearly bill for the boring beetles, choking fungi, and rogues' gallery of other foreign ...

Recommended for you

Study visualizes proteins involved in cancer cell metabolism

May 26, 2016

Scientists using a technology called cryo-EM (cryo-electron microscopy) have broken through a technological barrier in visualizing proteins with an approach that may have an impact on drug discovery and development. They ...

Light can 'heal' defects in some solar cells

May 24, 2016

A family of compounds known as perovskites, which can be made into thin films with many promising electronic and optical properties, has been a hot research topic in recent years. But although these materials could potentially ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.