Targeting toxin trafficking

Jul 21, 2011

Toxins produced by plants and bacteria pose a significant threat to humans, as emphasized by the recent effects of cucumber-borne Shiga toxin in Germany. Now, new research published on July 21st by the Cell Press journal Developmental Cell provides a clearer view of the combination of similar and divergent strategies that different toxins use to invade a human host cell.

Ricin is a highly derived from the castor bean plant that has raised concerns as a potentially lethal biological weapon. Exotoxin A (PE) is a sometimes deadly protein produced by a common that can infect the lungs and urinary tract. "Although from very different origins, both PE and share several points in common," says senior study author, Dr. Frédéric Bard from the Institute of Molecular and Cell Biology in Singapore. "Like many other toxins, they have evolved mechanisms for hijacking intracellular membrane transport processes." Previous research has identified some of the proteins made by our own cells that are used by the toxins. In theory, disrupting these proteins, or the genes that make them, could serve as a useful toxin antidote. However, the extent to which different toxins share requirements for the host proteins they use was not clear.

Dr. Bard and colleagues discovered that many different proteins are required for maximum toxicity of ricin and PE, and the requirements of both toxins differ significantly and at multiple levels. However, the pathways used by the toxins do exhibit some similarities. "Interestingly, the toxins share some genetic requirements, and exhibit similar sub-cellular localizations at various levels of their trafficking, suggesting two intertwined pathways converging and diverging at multiple levels," explains Dr. Bard.

Although the reason for this complexity is not clear, understanding toxin trafficking at the genetic level may prove useful for designing treatments that target these and other similar potentially deadly toxins. "Our study provides a number of potential therapeutic targets to design specific toxin antidotes. Understanding and targeting specific pathways will likely allow a better control of possible side effects," concludes Dr. Bard. "Additionally, the high number of genes involved also suggests that synergistic drug therapies against these types of toxins could be designed."

Explore further: Genomes of malaria-carrying mosquitoes sequenced

add to favorites email to friend print save as pdf

Related Stories

Ricin's deadly action revealed by glowing probes

Aug 07, 2008

A new chemical probe can rapidly detect ricin, a deadly poison with no known antidote that is feared to be a potential weapon for terrorists and cannot quickly be identified with currently available tests.

Snake venoms share similar ingredients

Dec 20, 2007

Venoms from different snake families may have many deadly ingredients in common, more than was previously thought. A study published in the online open access journal BMC Molecular Biology has unexpectedly discovered three- ...

What are protective effects of anti-ricin A-chain aptamer?

Dec 29, 2008

Ricin, a lectin from the castor bean plant Ricinus communis is considered one of the most potent plant toxins. Ricin poisoning can cause severe tissue damage and inflammation and can result in death. Most accidental exposures ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

Nov 27, 2014

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.