Thinnest nanofiltration membrane to date

Jul 07, 2011
Thinnest nanofiltration membrane to date
Close-packed nanoparticle monolayers self-assembled from dodecanethiol-ligated gold nanocrystals. TEM image (left) and atomistic simulation of tryptophan transport through a pore.

A recent collaboration between researchers at the University of Chicago and the University of Illinois at Chicago with the Center for Nanoscale Material's Electronic & Magnetic Materials & Devices Group at the Argonne National Laboratory has produced the thinnest nanofiltration membrane achieved thus far, at about 30 nm, made of just four layers of nanoparticles.

A separation is a key component in both nanofiltration and reverse osmosis filtration systems. Typically they are microns-thick polymer films. Reducing the thickness of the membrane reduces the pressure that needs to be applied across the membrane in order to achieve a certain amount of flux, which is a major operational cost in these devices. The filtration coefficient of this membrane for aqueous solutions is two orders of magnitude larger than for typical polymer-based nanofiltration systems. Near only 80 kPa pressure, the membrane exhibits pronounced charge sensitivity for a variety of dyes and other molecules, while rejecting molecules greater than 1.7 nm in size. Guided by atomistic molecular dynamics simulations, it was found that molecular transport occurs through pore-like regions between close-packed nanoparticles and that dielectric exclusion dominates the charge-dependent rejection.

This research opens up new possibilities for using nanoparticles in nanofiltration and separation. As the particle size, surface ligand type, and packing geometry in the membrane can all be adjusted, it is potentially possible to further adjust the cut-off size and robustness of the membrane for a variety of filtration applications.

Explore further: The latest fashion: Graphene edges can be tailor-made

More information: J. Heet al., ”Diffusion and Filtration Properties of Gold Nanoparticle Membranes,” Nano Letters, 11, 243, (2011).

add to favorites email to friend print save as pdf

Related Stories

Better way to desalinate water discovered

Feb 09, 2006

Chemical engineer Kamalesh Sirkar, PhD, a distinguished professor at New Jersey Institute of Technology and an expert in membrane separation technology, is leading a team of researchers to develop a breakthrough method to ...

Nanopores make sterile filtration more reliable

Jul 01, 2010

Irregular pores, low flow rates: The plastic membrane filters used in sterile filtration do not always ensure that conditions are really sterile. Filter membranes of aluminum oxide are more reliable - the ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.