Stem cells know where they want to go

Jul 07, 2011

Human stem cells have the ability to become any cell type in the human body, but when it comes to their destination they know where they want to go.

This finding by McMaster University researchers sheds new light on how these regenerative cells turn into more specialized cell types, such as neural or blood cells. Until now, the thought has been that keep all their options open and have no preference when it comes to becoming more specialized.

In a paper published in the scientific journal Cell Stem Cell, Mick Bhatia, director of the McMaster Stem Cell and Cancer Research Institute, led a team of to discover the molecular underpinnings of how human make decisions. Pluripotency is the ability of stem cells to turn into any one of the 226 cell types that make up the .

The researchers discovered the fate – or destination – of human pluripotent stem cells is encoded by how their DNA is arranged, and this can be detected by specific proteins on the surface of the stem cells.

"It's like going on secret trip," said Bhatia, a professor in the Department of Biochemistry and Biomedical Sciences at the Michael G. DeGroote School of Medicine. "When you decide to go to Jamaica, you pack your toothbrush, underwear, and of course shorts, t-shirts and swimsuits. But if, at the last minute, you get rerouted to Alaska, you unpack a few things but the basic elements, like your toothbrush, are going to be the same. You may just trade the shorts and swimsuits for long pants and a sweater."

Until now, common scientific belief has been that all pluripotent stem cells are equivalent and keep all options open at the same time. But that's really not the case, Bhatia says.

"This study showed that pluripotent cells are not all equal," he said. "They are all pluripotent. You can force a cell that normally would love to become a neural cell to turn into blood, just like you can force the vacationer to go Alaska instead of Jamaica. They'll do it, but not very well and not happily."

For the study, Bhatia and his research team found stem cells with roadmaps and specifically packed suitcases for the blood and neural destinations. The researchers discovered when they isolated these stem cells by new protein markers on the surface of cells, they were able produce a greater number of specialized cells – nearly five times as many and twelve times as many neural cells compared to when the stem cells had to be forced into those cell types.

The results open the door to tailoring stem cells and improving their ability for tissue and organ regeneration. The researchers now plan to investigate how the process works in induced pluripotent stem cells – the kind created from adult skin.

Explore further: Researchers discover new strategy germs use to invade cells

Related Stories

McMaster researchers say not all stem cells the same

Oct 19, 2010

Until now it's been thought that human stem cell lines are all identical and possess the same ability to differentiate, or change into more specific cell types. But new research from McMaster University has shown there are ...

New study hopeful on neural stem cells

Aug 05, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

Recommended for you

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0