Stem cells know where they want to go

Jul 07, 2011

Human stem cells have the ability to become any cell type in the human body, but when it comes to their destination they know where they want to go.

This finding by McMaster University researchers sheds new light on how these regenerative cells turn into more specialized cell types, such as neural or blood cells. Until now, the thought has been that keep all their options open and have no preference when it comes to becoming more specialized.

In a paper published in the scientific journal Cell Stem Cell, Mick Bhatia, director of the McMaster Stem Cell and Cancer Research Institute, led a team of to discover the molecular underpinnings of how human make decisions. Pluripotency is the ability of stem cells to turn into any one of the 226 cell types that make up the .

The researchers discovered the fate – or destination – of human pluripotent stem cells is encoded by how their DNA is arranged, and this can be detected by specific proteins on the surface of the stem cells.

"It's like going on secret trip," said Bhatia, a professor in the Department of Biochemistry and Biomedical Sciences at the Michael G. DeGroote School of Medicine. "When you decide to go to Jamaica, you pack your toothbrush, underwear, and of course shorts, t-shirts and swimsuits. But if, at the last minute, you get rerouted to Alaska, you unpack a few things but the basic elements, like your toothbrush, are going to be the same. You may just trade the shorts and swimsuits for long pants and a sweater."

Until now, common scientific belief has been that all pluripotent stem cells are equivalent and keep all options open at the same time. But that's really not the case, Bhatia says.

"This study showed that pluripotent cells are not all equal," he said. "They are all pluripotent. You can force a cell that normally would love to become a neural cell to turn into blood, just like you can force the vacationer to go Alaska instead of Jamaica. They'll do it, but not very well and not happily."

For the study, Bhatia and his research team found stem cells with roadmaps and specifically packed suitcases for the blood and neural destinations. The researchers discovered when they isolated these stem cells by new protein markers on the surface of cells, they were able produce a greater number of specialized cells – nearly five times as many and twelve times as many neural cells compared to when the stem cells had to be forced into those cell types.

The results open the door to tailoring stem cells and improving their ability for tissue and organ regeneration. The researchers now plan to investigate how the process works in induced pluripotent stem cells – the kind created from adult skin.

Explore further: Surprise: Lost stem cells naturally replaced by non-stem cells, fly research suggests

Related Stories

McMaster researchers say not all stem cells the same

Oct 19, 2010

Until now it's been thought that human stem cell lines are all identical and possess the same ability to differentiate, or change into more specific cell types. But new research from McMaster University has shown there are ...

New study hopeful on neural stem cells

Aug 05, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

Recommended for you

Researchers successfully clone adult human stem cells

4 hours ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

7 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Magnitude-7.2 earthquake shakes Mexican capital

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

Sun emits a mid-level solar flare

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...