Sounding rockets study how winds in space drive currents in the upper atmosphere

Jul 05, 2011
A chemical trail like the one here -- this one deployed from a sounding rocket at night as opposed to in the daytime -- will help researchers track wind movement to determine how it affects the movement of charged particles in the atmosphere. Credit: NASA

Some 50 miles up in the sky begins a dynamic region of the atmosphere known as the ionosphere. The region is filled with charged particles created by extreme ultraviolet radiation from the sun. At the base of the ionosphere, charged particle motions create a global current called the "atmospheric dynamo." Generally moving in loops from the equator to the poles, the dynamo changes daily based on solar heating and magnetic activity – but what keeps it moving isn't well understood.

This July, scientists will launch four rockets from NASA's Wallops Flight Facility, Va., for a five-minute journey some 100 miles up into the . The rockets will collect data on the charged particles as well as winds of neutral particles that sweep through the lower and how each affects the other, ultimately causing these currents.

The variations matter because all of our communications and GPS satellites send signals through the ionosphere. A disturbed ionosphere translates to disturbed signals, so scientists want to know just what causes the ionosphere to behave in specific ways.

"This experiment has never been done before," says Rob Pfaff, the project scientist for NASA's sounding rocket program at Goddard Space Flight Center in Greenbelt, Md. "We've measured the dynamo currents using rocket probes, but we've never simultaneously measured the currents along with the upper atmosphere winds and the electric fields that drive the currents."

The rockets -- known as sounding rockets from the nautical term "to sound," meaning to measure -- will launch sometime between July 5 and 23 depending on ionospheric and weather conditions. NASA's sounding program at Wallops dates back to the agency's inception in 1958. Not only do sounding rockets offer a low cost way to access space, they also provide access to areas of the atmosphere too low for satellites.

In this experiment, the scientists will fly two pair of rockets. One in each pair will measure data about the charged or "ionized" gas -- called plasma -- as well as the neutral gas, through which it travels. The other will shoot out a long trail of lithium gas to track the wind movement. The instrumented rockets are 40 feet long and 17 inches in diameter, carrying a payload of 600 lbs. The lithium rockets are 14 inches in diameter and are about six feet long.

Beginning July 5, the team will set up each day from 9 a.m. to 1 p.m. EDT, ready to launch as soon as there's evidence of currents in the ionosphere as well as a crystal clear skies – necessary for successful observation of the lithium trail.

"We're studying a current that runs through the atmosphere much like the Gulf Stream moves through the ocean," says Doug Rowland a space scientist at Goddard who also helped design this mission. "In the Gulf Stream, a given parcel of water travels around the whole system, and the same thing happens with the plasma in the atmosphere. In general, during the day it travels in giant, horizontal loops from to pole and back."

What happens on such a typical day is not, of course, the whole story. The charged particle loops are guided by electric fields generated by winds and solar activity. But in the lower part of the ionosphere, there are a billion times more neutral particles than charged ones. The neutral particles, moving in their own wind patterns, can collide with the charged and slow them down.

Increased solar activity can adjust the magnetic fields around Earth and cause even more variation in the ionosphere. Ideally one set of rockets will go up on a day of "quiet" solar activity, and the second will launch into increased space weather activity from the sun.

"The currents we are studying are part of a large global system called the atmospheric dynamo," says Pfaff. "So it's important not just for understanding how it affects our satellites, but because it is a fundamental process of Earth's upper atmosphere – and probably other planets with atmospheres as well."

Both sets of rockets will collect data on the currents, the electric fields, the electron density, the neutral gas density, and the motion of the neutral wind. The researchers will compare information from the two flights to better understand how the solar wind and the neutral wind interact and cause those communications-jamming instabilities in the ionosphere.

Explore further: Meteorites yield clues to Martian early atmosphere

More information: The launch will be webcast beginning at 6:30 a.m. on launch day at: sites.wff.nasa.gov/webcast

Related Stories

Clemson rocket launches test Alaskan auroras

Mar 16, 2007

It may have been 40 degrees below zero at the Poker Flat Research Range in Alaska, but aurora and weather came together one recent winter night in a perfect match for Clemson University researchers and students ...

NASA extends TIMED mission for fourth time

Nov 05, 2010

Nine years after beginning its unprecedented look at the gateway between Earth's environment and space, not to mention collecting more data on the upper atmosphere than any other satellite, NASA's Thermosphere ...

Busy rocket season to launch at Poker Flat Research Range

Jan 12, 2009

A total of eight National Aeronautics and Space Administration sounding rockets will launch from Poker Flat Research Range in 2009. The rocket season is split into two launch windows. The first launch window opens Jan. 10, ...

Recommended for you

Red moon at night; stargazer's delight

17 hours ago

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

Meteorites yield clues to Martian early atmosphere

19 hours ago

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

22 hours ago

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

Image: Rosetta's Philae lander snaps a selfie

22 hours ago

Philae is awake… and taking pictures! This image, acquired last night with the lander's CIVA (Comet nucleus Infrared and Visible Analyzer) instrument, shows the left and right solar panels of ESA's well-traveled ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

vidyunmaya
1 / 5 (1) Jul 06, 2011
Sub: Plasma Regulated-EM Universe-Magnetic Environment
simple techniques like the above -through sounding rockets help new dawn of Science-Nature-Philosophy.Environment Sensitive Index. Vidyardhi nanduri[Cosmology Vedas Interlinks]

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

Net neutrality balancing act

Researchers in Italy, writing in the International Journal of Technology, Policy and Management have demonstrated that net neutrality benefits content creator and consumers without compromising provider innovation nor pr ...