Rhodium-iron catalyst helps increase yield of hydrogen gas in steam reforming of ethanol

July 7, 2011 By Lee Swee Heng
Schematic illustration of a rhodium-iron oxide catalyst on solid aluminium oxide for converting bioethanol into hydrogen gas at low temperature. Credit: The Agency for Science, Technology and Research

Vehicles powered by hydrogen fuel cells generate no exhaust emissions other than clean water vapor. Unfortunately, producing and distributing large quantities of hydrogen gas is impossible with current infrastructures. Researchers are instead turning to on-board fuel processing -- using small-scale reactors to 'reform' gasoline into hydrogen with the help of high-temperature steam -- to aid implementation of this alternative technology.

Luwei Chen and co-workers at the A*STAR Institute of Chemical and Engineering Sciences and the National University of Singapore have now developed a catalyst that makes on-board hydrogen generation safer and easier to perform than ever before. By combining the beneficial properties of two metals into a nanostructured material, the catalyst can eliminate (CO) emissions from the low-temperature steam reforming of —a significant advantage over current approaches.

Ethanol is an attractive fuel for on-board hydrogen generation because it can be sourced from renewable biological materials. However, the steam reforming of ethanol is a complex procedure with many possible byproducts. Some of the most serious contaminants are carbonaceous deposits, known as coke, which plug up catalysts and prevent them from working. Operation at high temperatures of 550–800 °C can mitigate coking effects, but these conditions also lead to more CO gas emissions during the reforming reactions.

The research team resolved this dilemma by combining rhodium crystals, which can catalyze ethanol steam reforming at low temperatures, with iron oxide nanoparticles onto a solid substrate. Chen explains that iron oxide catalyzes the water–gas shift reaction, an additional process that converts CO and water into hydrogen and carbon dioxide (see image). “These two components work together in the same temperature range, making them a good match,” she says.

Experiments revealed that this new substance performed admirably at temperatures of 350–400 °C, yielding about four units of from every ethanol molecule, with no CO byproducts. Furthermore, the rhodium–iron oxide system had an extraordinarily long lifetime—steam reforming could proceed for over 300 hours without coke deposits deactivating the .

Additional analysis provided the researchers with a plausible mechanistic understanding of their discovery. While the strong bonding between CO and rhodium creates coke deposits, the presence of iron oxide disrupts this chemical equilibrium. CO molecules migrate from the rhodium over iron nanoparticles, where they undergo a water–gas shift reaction that enhances hydrogen output.

According to Chen, removing CO emissions from bioethanol steam reforming should lead to the design of simpler and cheaper on-board reactors, bringing these devices one step closer to widespread adoption.

Explore further: Method to capture carbon monoxide's energy for new generation of inexpensive fuel cells

More information: Chen, L. et al. Carbon monoxide-free hydrogen production via low-temperature steam reforming of ethanol over iron-promoted Rh catalyst. Journal of Catalysis 276, 197–200 (2010).

Related Stories

Ceramic microreactors developed for on-site hydrogen production

September 19, 2006

Scientists at the University of Illinois at Urbana-Champaign have designed and built ceramic microreactors for the on-site reforming of hydrocarbon fuels, such as propane, into hydrogen for use in fuel cells and other portable ...

New Catalyst Paves the Path for Ethanol-Powered Fuel Cells

January 26, 2009

(PhysOrg.com) -- A team of scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, in collaboration with researchers from the University of Delaware and Yeshiva University, has developed a new ...

Recommended for you

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

Bio-inspired tire design: Where the rubber meets the road

August 24, 2016

The fascination with the ability of geckos to scamper up smooth walls and hang upside down from improbable surfaces has entranced scientists at least as far back as Aristotle, who noted the reptile's remarkable feats in his ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 07, 2011
2000/US oz average price for Rhodium.


Seems high for widespread use.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.