Reservoirs of ancient lava shaped Earth

July 27, 2011

Geological history has periodically featured giant lava eruptions that coat large swaths of land or ocean floor with basaltic lava, which hardens into rock formations called flood basalt. New research from Matthew Jackson and Richard Carlson proposes that the remnants of six of the largest volcanic events of the past 250 million years contain traces of the ancient Earth's primitive mantle—which existed before the largely differentiated mantle of today—offering clues to the geochemical history of the planet. Their work is published online July 27 by Nature.

Scientists recently discovered that an area in northern Canada and Greenland comprised of flood basalt contains traces of ancient Earth's primitive . Carlson and Jackson's research expanded these findings, in order to determine if other large volcanic rock deposits also derive from primitive sources.

Information about the primitive mantle reservoir—which came into existence after the Earth's core formed but before the Earth's outer rocky shell differentiated into crust and depleted mantle—would teach scientists about the geochemistry of early Earth and how our planet arrived at its present state.

Until recently, scientists believed that the Earth's primitive mantle, such as the remnants found in northern Canada and Greenland, originated from a type of meteorite called carbonaceous chondrites. But comparisons of isotopes of the element neodymium between samples from Earth and samples from chondrites didn't produce the expected results, which suggested that modern mantle reservoirs may have evolved from something different.

Carlson, of Carnegie's Department of Terrestrial Magnetism, and Jackson, a former Carnegie fellow now at Boston University, examined the isotopic characteristics of flood basalts to determine whether they were created by a primitive mantle source, even if it wasn't a chondritic one.

They used geochemical techniques based on isotopes of neodymium and lead to compare basalts from the previously discovered 62-million-year-old primitive mantle source in northern Canada's Baffin Island and West Greenland to basalts from the South Pacific's Ontong-Java Plateau, which formed in the largest volcanic event in geologic history. They discovered minor differences in the isotopic compositions of the two basaltic provinces, but not beyond what could be expected in a primitive reservoir.

They compared these findings to basalts from four other large accumulations of lava-formed rocks in Botswana, Russia, India, and the Indian Ocean, and determined that lavas that have interacted with continental crust the least (and are thus less contaminated) have neodymium and lead isotopic compositions similar to an early-formed primitive mantle composition.

The presence of these early-earth signatures in the six flood basalts suggests that a significant fraction of the world's largest volcanic events originate from a modern mantle source that is similar to the primitive reservoir discovered in Baffin Island and West Greenland. This primitive mantle is hotter, due to a higher concentration of radioactive elements, and more easily melted than other mantle reservoirs. As a result, it could be more likely to generate the eruptions that form flood basalts.

Explore further: Study Reconciles Long-Standing Contradiction of Deep-Earth Dynamics

Related Stories

Helium-3 - all is not lost

September 3, 2005

Is there a reservoir of primordial rock deep within the Earth, left over from the birth of our planet? Geochemical data have traditionally indicated 'yes', but evidence from seismology seemed inconsistent with the survival ...

Arctic rocks offer new glimpse of primitive Earth

August 11, 2010

Scientists have discovered a new window into the Earth's violent past. Geochemical evidence from volcanic rocks collected on Baffin Island in the Canadian Arctic suggests that beneath it lies a region of the Earth's mantle ...

Recommended for you

What would a tsunami in the Mediterranean look like?

August 27, 2015

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal ...

Intensity of desert storms may affect ocean phytoplankton

August 27, 2015

Each spring, powerful dust storms in the deserts of Mongolia and northern China send thick clouds of particles into the atmosphere. Eastward winds sweep these particles as far as the Pacific, where dust ultimately settles ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.