Position of telomeres in nucleus influences length

Jul 13, 2011
Top: Telomeres (bright green focus) localized to the nuclear periphery (green ring) in wildtype cells. on Bottom: Delocalization of telomeres to the nuclear interior in siz2Δ (SUMO-ligase deleted) cells.

(PhysOrg.com) -- A study the latest issue of Nature Cell Biology sheds light on the mechanism controlling telomere length in budding yeast. In this publication, scientists from the Friedrich Miescher Institute for Biomedical Research could show that telomere localization is influenced by post-translational modifications of telomeric proteins. In the absence of these modifications the telomeres moved away from the periphery of the nucleus and in turn became longer.

Telomeres are specialised structures at the ends of chromosomes and protect these from damage much like the plastic caps on a shoelace protect it from fraying. And as anyone who has threaded a shoelace will tell you, it's important that shoelace ends are neither too short nor too long.

A recent paper in from the laboratory of Susan Gasser from the Friedrich Miescher Institute for Biomedical Research has shown that the position of telomeres within the nucleus can influence how long they become. Using the budding yeast, Saccharomyces cerevisiae, the authors showed that telomere localization is influenced by the post-translational modification of telomeric proteins by SUMO. In cells where these proteins were not SUMO modified, because the SUMO-ligase Siz2 was deleted, telomeres detached from their usual location at the nuclear periphery and move to the interior of the nucleus. Subsequently, telomeres became longer.

In addition, the researchers were able to show that cells can use nuclear localisation to promote the restoration of normal telomere length when these became too short. This study helps to understand how cells organise the location of their within the nucleus and the significance of such a nuclear compartmentalization.

Explore further: Researchers discover new strategy germs use to invade cells

More information: Ferreira HC, et al. (2011) The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nat Cell Biol 13,867-874

Provided by Friedrich Miescher Institute for Biomedical Research

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Telomere length affects colorectal cancer risk

Oct 28, 2010

For the first time, researchers have found a link between long telomeres and an increased risk for colorectal cancer, according to research presented at the American Association for Cancer Research special conference on Colorectal ...

Size Matters - When it Comes to DNA

Jun 09, 2010

(PhysOrg.com) -- A new study at the University of Leicester is examining a sequence of DNA- known as telomeres - that varies in length between individual.

Common weed could provide clues on aging and cancer

Oct 26, 2009

A common weed and human cancer cells could provide some very uncommon details about DNA structure and its relationship with telomeres and how they affect cellular aging and cancer, according to a team led by scientists from ...

Recommended for you

Researchers discover new strategy germs use to invade cells

20 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

20 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0