Physicist builds advanced microscope

July 21, 2011 By D.J. Martin

Stephanie Meyer, a physicist specializing in optics, is bringing new capabilities to the University of Colorado Denver Anschutz Medical Campus by building an advanced, super resolution microscope able to see some of the innermost workings of the cell.

The university began the project after receiving funding from the National Institutes of Health through a shared grant with the American Recovery and Reinvestment Act. Diego Restrepo, Professor of Cell and Developmental Biology and principle investigator of the grant, won the funding by working with a team of researchers at CU Denver. The microscope will open up new opportunities in neuroscience research. 

They decided to build their own STED, or Stimulated Emission Depletion microscope, after a review of a commercial microscope made it clear that they required a different design. Stephanie Meyer began work on the microscope in May. She earned her PhD in physics from CU Boulder and gained invaluable experience as an intern at Zeiss, the world-renowned optics manufacturer in Germany. While there, she learned how to build microscopes. Today, she brings that expertise to the CU Denver Anschutz Medical Campus where microscopy is an indispensible tool in cutting-edge biomedical research.

The STED uses lasers to achieve extreme precision and clarity. Meyer said lower resolution microscopes are blurrier than the STED because light diffraction limits the size of a focused laser. However, the STED uses a special donut-shaped laser beam, combined with an excitation beam, to shine light on a smaller area.

“We want to get better resolution because a lot of biology happens on a smaller scale,” Meyer said. “For example, we want to see which proteins are congregating together.”

Electron microscopes can also reach high levels of resolution, but unlike the STED, the cells must be dead first. The advantage of examining live cells at higher resolution is that extremely small parts and processes can be seen. This includes being able to see how proteins interact, which can lead to discoveries about the inner workings of cells. At the same time, samples do not need to be as thinly sliced with STED as with the electron microscope.

Building a piece of high technology from scratch requires a keen grasp of scientific principles and a healthy dose of mechanical aptitude. On a recent visit to her the small lab, the physicist stood over a stainless steel table laden with highly machined lenses, mirrors, and a $100,000 laser. It all resembled a high-tech jigsaw puzzle and Meyer already knew what piece went where.  Now, she is plotting how to put the lasers into the microscope body.  Exactly when it will be finished is unknown, but given the complexity of the project it will likely take months.

As daunting as it appears, Meyer remains unfazed by the task.

“Once you build one and then another it becomes second nature to you,” she said. “This will be a wonderful tool for us and is just another example of how far microscopy has come.”

Explore further: Overcoming the limits of resolution

Related Stories

Overcoming the limits of resolution

June 12, 2007

This year's Julius Springer Prize for Applied Physics will be awarded to the Göttingen-based researcher Stefan Hell for his revolutionary discovery that resolutions far below the diffraction limit can be achieved in a fluorescence ...

PICO and SALVE: Understanding the subatomic world better

December 18, 2008

Two new high-resolution transmission electron microscopes, co-financed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), are set to open up new opportunities for research in physics and materials science. ...

To peer inside a living cell

October 6, 2009

(PhysOrg.com) -- Quantum mechanics could help build ultra-high-resolution electron microscopes that won't destroy living cells, according to MIT electrical engineers.

Recommended for you

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Biological tools create nerve-like polymer network

August 24, 2015

Using a succession of biological mechanisms, Sandia National Laboratories researchers have created linkages of polymer nanotubes that resemble the structure of a nerve, with many out-thrust filaments poised to gather or send ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.