From oil spill to toxic waste: The polymer solution

Jul 11, 2011 By Marcia Goodrich
Hungarian red-mud disaster.

( -- Last October, a containment dam belonging to a Hungarian alumina manufacturer collapsed after heavy rains, releasing 200 million gallons of caustic sludge. Eight people died in the flood of lye-like red mud, which overwhelmed nearby towns and created an environmental catastrophe.

In the aftermath, authorities followed standard practice, neutralizing the with acetic acid. Gerard Caneba, a professor of chemical engineering at Michigan Technological University, believes an unlikely chemical may work even better--and might transform into a valuable raw material.

Vinyl acetate polymers that are being developed in Caneba's lab have a near-neutral pH when they are dissolved in water, but something intriguing happens if you mix the solution in an alkaline substance like red mud, which has as high as 13. "When you put it in a base environment, poly(vinyl acetate) converts to poly(vinyl alcohol), and it also kicks out acetic acid within a minute," he said.

Thus, while it is neutralizing the red mud, the poly(vinyl acetate) is also creating a valuable product. A resulting solid material has potential uses in landscaping, insulation and construction. "We did tests and got really nice performance values on simulated alumina tailings," Caneba said. And there's no shortage of potential sites: "They have about 20 repositories in Hungary and could use this method to clean up any contaminated places. Other sources are found in Texas and Louisiana and wherever aluminum is being manufactured from bauxite ore."

This puts a smile on his face. "I like this mechanism," he says. "We're not just cleaning the stuff up with acetic acid. We can neutralize and turn it into something benign and useful."

Caneba has been working with the Hungarian Academy of Sciences to further test the process. Promising preliminary results are included in his new book, which details his research on vinyl acetate polymer solutions. He is also working with mining giant Rio Tinto, which is providing him with actual red mud samples.

Caneba is also developing next-generation chemicals from vinyl acetate polymers that could be used to clean up oil spills and disperse spilled oil. With researchers from Gulf Coast universities, he has been working to obtain funds to investigate this family of polymer surfactants.

In particular, the new surfactants could address deep oil plumes like those from last summer's disastrous spill in the Gulf of Mexico. Deep underwater, these eruptions of hot petroleum exploding from beneath the earth are quickly compressed and chilled in the ocean depths. "It's no surprise that you can have lingering plumes, and that they are particularly difficult to break up," said Caneba. "We think our formula will be able to help break down the oil better, so microbes can eat it up."

Lab tests have been promising, yielding emulsions that look "like cream," he said. The surfactants are also relatively benign from an environmental standpoint, which could give them an advantage over present-day oil dispersants.

"We're all really excited about this," said Caneba. Lab work to develop the vinyl acetate-based dispersants will probably begin this fall. And hopefully, those tests will yield new tools for cleaning up and remediating the next big oil spill.

Explore further: Bioengineers develop highly elastic biomaterial for better wound healing

Related Stories

Hungary's red sludge nearly equals Gulf oil spill

Oct 08, 2010

(AP) -- The mighty Danube apparently absorbed Hungary's massive red sludge spill with little immediate damage Friday but laboratory tests heightened concerns about possible longer-term harm caused by toxic ...

Can Hungary's red sludge be made less toxic with carbon?

Oct 13, 2010

The red, metal-laden sludge that escaped a containment pond in Hungary last week could be made less toxic with the help of carbon sequestration, says an Indiana University Bloomington geologist who has a patent ...

Recommended for you

Metal encapsulation optimizes chemical reactions

Jul 01, 2015

The chemical industry consumes millions of tons of packing materials as catalytic sup- port media or adsorbents in fixed-bed reactors and heat storage systems. Fraunhofer researchers have developed a means of encapsulating ...

Fuel and chemicals from steel plant exhaust gases

Jul 01, 2015

Carbon monoxide-rich exhaust gases from steel plants are only being reclaimed to a minor extent as power or heat. Fraunhofer researchers have developed a new recycling process for this materially unused carbon resource: They ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.