Controlling movements with light

July 20, 2011

German researchers at the Ruhr-Universitaet have succeeded in controlling the activity of certain nerve cells using light, thus influencing the movements of mice. By changing special receptors in nerve cells of the cerebellum such that they can be activated and deactivated by light, the researchers have shown that the signaling pathways, which are activated by the receptors play a crucial role in controlling movement.

Unlike conventional methods, with the so-called optogenetics, the researchers are able to target one cell type. "We are now going to use this method to find out exactly what goes wrong in the nerve cells in movement disorders such as ataxias", said Prof. Dr. Stefan Herlitze (RUB Department for Biology and Biotechnology). The results are reported in the .

The Bochum team examined a specific signalling pathway that is controlled by a so-called G-protein-coupled receptor. This is important for the modulation of activity in complex . Disturbances of the function can, for example, have an effect on emotional and motor behaviours. "We know that the activity pattern of the Purkinje cells in the cerebellum is crucial for the coordination of movements", Herlitze explained. "It is unclear, however, what contribution is made by the individual ." In conventional studies, researchers use drugs that inhibit or stimulate specific proteins in to investigate the contribution of these proteins to the activity of the cells. However, Herlitze's team was interested in a (G-protein-coupled receptor) which occurs in various cell types. Had the researchers administered a drug, they would not only have deactivated the receptor in the Purkinje cells, but in all cell types in which it occurs. The drug method therefore makes it impossible to observe the contribution of the receptor in the Purkinje cells in isolation.

Optogenetics: replacing drugs with light

To avoid this problem, Herlitze's team replaced the drugs with proteins that are activated by light. Using genetic methods, the researchers integrated rhodopsin, the light-sensitive protein of the eye, into the Purkinje cells of mice. They also implanted a laser probe in the , with which they illuminated the rhodopsin. The light-activated rhodopsin then activated the G-protein-coupled receptor in the Purkinje cells, while the same receptors in other cell types remained inactive. The RUB Department of General Zoology and Neurobiology has been instrumental in establishing this method worldwide.

Investigated receptor is crucial for movement control

The researchers found that activation of the G-protein-coupled receptor changed the activity pattern of the Purkinje cells. Herlitze's team had to expose the rhodopsin to light for several seconds to achieve these effects. A twenty to thirty percent reduction in cell activity was sufficient to induce visible motor deficits in the behaviour of the mice, such as impaired balance or coordination problems. "We were able to demonstrate for the first time that the modulation of a specific G-protein-coupled receptor in the Purkinje cells is of crucial importance for the control and coordination of movement", summed up Herlitze.

Explore further: Complex channels

More information: Gutierrez, D.V., Mark, M.D., Masseck, O., Maejima, T., Kuckelsberg, D., Hyde, R.A., Krause, M., Kruse, W., Herlitze, S. Optogenetic control of motor coordination by Gi/o protein-coupled vertebrate rhodopsin in cerebellar Purkinje cells. J. Biol. Chem., doi: 10.1074/jbc.M111.25367 (2011)

Related Stories

Complex channels

January 24, 2007

The messages passed in a neuronal network can target something like 100 billion nerve cells in the brain alone. These, in turn communicate with millions of other cells and organs in the body. How, then, do whole cascades ...

Beginning to see the light

September 29, 2008

( -- Scientists have detailed the active form of a protein which they hope will enhance our understanding of the molecular mechanisms of vision, and advance drug design.

Replacing faulty neurons

November 5, 2010

Researchers from the RIKEN Center for Developmental Biology, Kobe, have shown that neurons called Purkinje cells can not only be generated from embryonic stem (ES) cells, but can also become fully integrated into existing ...

Flipping a switch on neuron activity

March 7, 2011

All our daily activities, from driving to work to solving a crossword puzzle, depend on signals carried along the body's vast network of neurons. Propagation of these signals is, in turn, dependent on myriad small molecules ...

Important role for the cerebellum

March 18, 2011

Hereditary diseases such as epilepsy or various coordination disorders may be caused by changes in nerve cells of the cerebellum, which do not set in until after birth. This is reported by Bochum's neuroscientists in the ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.