Mercury vapor released from broken compact fluorescent light bulbs can exceed safe exposure levels

Jul 06, 2011
Environmental Engineering Science is an authoritative interdisciplinary journal publishing state-of-the-art studies of innovative solutions to problems in air, water, and land contamination and waste disposal. For more information, please visit www.liebertpub.com/ees. Credit: © 2011, Mary Ann Liebert, Inc., publishers

Once broken, a compact fluorescent light bulb continuously releases mercury vapor into the air for weeks to months, and the total amount can exceed safe human exposure levels in a poorly ventilated room, according to study results reported in Environmental Engineering Science, a peer-reviewed online only journal published monthly by Mary Ann Liebert, Inc.

The amount of liquid (Hg) that leaches from a broken compact fluorescent lamp (CFL) is lower than the level allowed by the U.S. (EPA), so CFLs are not considered hazardous waste. However, Yadong Li and Li Jin, Jackson State University (Jackson, MS) report that the total amount of Hg vapor released from a broken CFL over time can be higher than the amount considered safe for human exposure. They document their findings in the article "Environmental Release of Mercury from Broken Compact Fluorescent Lamps."

As people can readily inhale vapor-phase mercury, the authors suggest rapid removal of broken CFLs and adequate ventilation, as well as suitable packaging to minimize the risk of breakage of CFLs and to retain Hg vapor if they do break, thereby limiting human exposure.

Tests of eight different brands of CFLs and four different wattages revealed that Hg content varies significantly from brand to brand. To determine the amount of Hg released by a broken CFL, Li and Jin used standard procedures developed by the EPA to measure leaching of mercury in liquids and used an emission monitoring system to detect Hg vapor.

"This paper is a very nice holistic analysis of potential risks associated with mercury release from broken CFLs and points to potential human health threats that have not always been considered," according to Domenico Grasso, PhD, Editor-in-Chief and Vice President for Research, Dean of the Graduate College, University of Vermont (Burlington).

Explore further: Measuring phosphorus loss from Midwest crop fields

More information: The article is available free online at www.liebertpub.com/ees

Provided by Mary Ann Liebert, Inc.

5 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Mercury thermometers face final phase out

Feb 25, 2011

The mercury thermometer, long a fixture in household medicine cabinets and industrial settings, is going the way of the horse and buggy. The reason: Mercury released into the environment from a broken thermometer ...

Recommended for you

Measuring phosphorus loss from Midwest crop fields

2 hours ago

Field runoff from farms in the Lake Erie basin is often rich in soluble plant nutrients, including phosphorus. When this nutrient-rich runoff reaches the lake, the phosphorus can support abundant algal blooms ...

FACT CHECK: Both sides in Keystone XL debate bend facts

14 hours ago

Supporters of the Keystone XL pipeline, which would run from Canada to the Gulf, say the privately funded, $8 billion project is a critically needed piece of infrastructure that will create thousands of jobs ...

Sao Paulo warns of severe water rationing

16 hours ago

Authorities in Sao Paulo, Brazil's richest state and economic hub, have warned they are considering severe water rationing if the country's worst drought in 80 years continues.

Refineries challenge EPA plan to cut emissions

19 hours ago

A rule proposed by the Environmental Protection Agency that aims to curb emissions from oil refineries and petrochemical manufacturers is causing tensions to flare between the agency and industry groups. The agency is reviewing ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.