Korean researchers report creation of faster, more resilient ReRam

Jul 20, 2011 by Bob Yirka report

(PhysOrg.com) -- Korean researchers working out of the Samsung Advanced Institute of Technology report in a paper published in Nature Materials, that they've been able to create a non-volatile Resistance RAM (ReRam) chip capable of withstanding a trillion read/write cycles, all with a switching time of just 10ns (about a million times faster than current flash chips), paving the way for a possible upgrade to flash memory cards.

ReRam chips are non-volatile, meaning they can retain stored information in the absence of power and are currently made using a Ta2O5 (tantalum) film, the new chips developed by the Samsung team uses Ta2O5-x/TaO2-x as filaments to create a bi-layer structure, rather than coating the entire surface with the metallic substance.

The authors report in the paper that they believe their chip uses less power than other experimental ReRam chips and should be suitable as a potential replacement for current flash memory devices.

The research is part of the IMEC consortium comprised of some of the biggest names in chip research; in addition to Samsung, other participants include Intel, Panasonic, NVIDIA and many others. The ultimate goal is to seek out new frontiers in the advancement of nano-electronics.

Resistive is based on the idea of a , which is a substance that is normally insulating, but when jolted with sufficient power, becomes a . It’s this property that allows information to get in and then to be held inside after the power is removed; sort of like pushing an object through a rubber gasket, it takes force to get both in and out. To use the substance in a memory chip, a path must be maintained though it in both directions and that is what the metallic filaments are for, to carry signals through the dielectric substance. The filaments are then gated, which means the path through can be broken and unbroken to allow current to pass through or not. In this new research, many , or paths, are created to increase the amount of information that can come and go with any one jolt of electricity.

The only down side to the new research is that it appears it won’t be ready to go to market for a while, as more research is needed. In the meantime, we’ll all just have to be careful with how much reading and writing we do with our flash drives.

Explore further: X-ray detector on plastic delivers medical imaging performance

More information: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures, Nature Materials (2011) doi:10.1038/nmat3070

Abstract
Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaOx-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 1012. Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.

Related Stories

Samsung Develops 2Gb Flash Memory Using 60nm Process

Jun 30, 2006

Samsung Electronics Co., Ltd., the world leader in advanced memory technology, announced today that it has successfully developed a faster and higher capacity version of the world's fastest memory chip.-- OneNAND ...

Samsung's new flash chips for mobile devices

Jan 14, 2010

(PhysOrg.com) -- Samsung Electronics has announced two new flash chip storage devices for mobiles: a removable 32-Gbyte micro SD (secure digital) card and a 64-Gbyte moviNAND flash memory module. Both are ...

Remembering the future

Nov 15, 2007

As electronics designers cram more and more components onto each chip, current technologies for making random-access memory (RAM) are running out of room. European researchers have a strong position in a new ...

Recommended for you

Sony's PlayStation 4 sales top seven million

2 hours ago

Sony says it has sold seven million PlayStation 4 worldwide since its launch last year and admitted it can't make them fast enough, in a welcome change of fortune for the Japanese consumer electronics giant.

Weibo IPO below expectations, raises $285.6 mn

2 hours ago

Sina Weibo sold fewer shares than expected in its US IPO which was priced below expectations ahead of a Thursday listing that takes place after tech selloffs on Wall Street.

'Chief Yahoo' David Filo returns to board

3 hours ago

Yahoo announced the nomination of three new board members, including company co-founder David Filo, who earned the nickname and formal job title of "Chief Yahoo."

Fired Yahoo exec gets $58M for 15 months of work

4 hours ago

Yahoo's recently fired chief operating officer, Henrique de Castro, left the Internet company with a severance package of $58 million even though he lasted just 15 months on the job.

User comments : 0

More news stories

Sony's PlayStation 4 sales top seven million

Sony says it has sold seven million PlayStation 4 worldwide since its launch last year and admitted it can't make them fast enough, in a welcome change of fortune for the Japanese consumer electronics giant.

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...