Kinetochores prefer the 'silent' DNA sections of the chromosome

July 5, 2011
Heterochromatin borders are 'hotspots' for the formation of new kinetochores outside the centromere: Antibody-staining of fixed chromosomes of Drosophila cells during cell division. The double green arrow indicates normal endogenous kinetochores, the white arrow indicates newly-formed ectopic kinetochores (green: centromere-specific histone; blue: DNA; red: euchromatin). Scale: 3 micrometres. Credit: P. Heun, MPI for Immunobiology and Epigenetics

The protein complex responsible for the distribution of chromosomes during cell division is assembled in the transition regions between heterochromatin and euchromatin.

The centromere is a specialized region of the chromosome, on which a protein complex known as the is assembled. During cell division, the kinetochore provides a point of attachment for molecules of the cytoskeleton, thereby mediating the segregation of chromosomes to the two opposing cell poles. Scientists from the Max Planck Institute of Immunobiology and and BIOSS in Freiburg have investigated the factors that play an essential role in the development of the kinetochore. According to their findings, both the organisation of the chromosomes and epigenetic marks determine the location where a kinetochore and, eventually, a centromere can form.

Centromeres are visible under the microscope as constrictions in the chromosomes. During cell division, the kinetochore, which is attached to the centromere, adheres to the microtubuli of the cytoskeleton and ensures that the chromosomes are divided equally between the two . It was already known that cells of the brewer's yeast Saccharomyces cerevisiae, contain a very specific gene section of 125 base-pairs in length, which binds to the kinetochore complex and thereby enables the formation of a centromere.

However, other organisms do not appear to have a specific which defines the location of the kinetochore formation. Instead, researchers suspect that the position of the centromere is regulated epigenetically with the help of the centromere-specific DNA packaging protein (histone) CENH3/CENP-A. , around which the thread-like is wrapped at regular intervals, influence the of the and, therefore also, the accessibility of genes and binding of other proteins, for example the kinetochore complex.

The Freiburg-based researchers have now succeeded in demonstrating that not only the centromere histone CENH3 but also other factors contribute to the formation of a functional kinetochore. Using a new research method, they induced the formation of the centromere-specific histone CENH3 in cells of the fruit fly Drosophila. Although the cells incorporated the protein into their chromosomes in many sites, the de novo assembly of ectopic kinetochores occurred not randomly but preferentially at the transition between gene-poor (heterochromatin) and gene-rich (euchromatin) sections, most often at the ends of the chromosomes, the telomeres.

It is possible that the transition regions between heterochromatin and euchromatin and the telomeres promote the formation of a kinetochore due to the absence of the typical and euchromatin proteins. In addition, very few genes are expressed and translated into proteins in these regions. Moreover, the chromatin turnover in these regions is very low, so that the kinetochore-specific histone can accumulate. "Therefore, in addition to the centromere-specific histones, the surroundings of the chromosome clearly play a crucial role in the formation of the kinetochore. Epigenetic histone marks thereby also influence where a kinetochore and, ultimately, a centromere can form," explains Patrick Heun from the Max Planck Institute of Immunobiology and Epigenetics.

Explore further: Portuguese scientists working on chromosome segregation

More information: Olszak AM, van Essen D, Pereira AJ, Diehl S, Manke T, Maiato H, Saccani S, Heun P. Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat Cell Biol., 19 June 2011 doi:10.1038/ncb2272

Related Stories

Portuguese scientists working on chromosome segregation

July 1, 2009

Lars Jansen's work on the formation of the centromere, a key cellular structure in powering and controlling chromosome segregation and accurate cell division, has just earned him a paper in Nature Cell Biology and a prestigious ...

Getting a tighter grip on cell division

November 25, 2010

( -- The dance of cell division is carefully choreographed and has little room for error. Paired genetic information is lined up in the middle of the cell in the form of chromosomes. The chromosomes must then ...

New light shed on cell division

June 14, 2011

Genes control everything from eye color to disease susceptibility, and inheritance - the passing of the genes from generation to generation after they have been duplicated - depends on centromeres. Located in the little pinched ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.