Invigorating plants

Jul 07, 2011
Healthy plants. Credit: iStockphoto.com/Tomas Beric

One of the key elements of the Green Revolution – when a series of  agricultural initiatives dramatically boosted crop productivity worldwide – was the harnessing of hybrid vigour. This phenomenon occurs when the crossing of two inbred strains results in offspring with superior qualities.

Professor Sir David Baulcombe, Regius Professor of Botany in the Department of Plant Sciences, hopes that a new molecular understanding of hybrid vigour could underpin technology-based plant modifications to stave off future food shortages. This time, he believes, “it will be possible to predict precisely which parents will produce the best hybrid and to fine-tune aspects of that improvement, whether it’s yield, drought tolerance or disease resistance.”

Plants have memories too

The story begins with a small interfering ribonucleic acid (siRNA). Plants, like animals, have developed mechanisms to ward off disease and ‘remember’ past infections. One of the most important plant defences against viruses, as discovered by Professor Baulcombe, is called RNA silencing.

Plant cells recognize the foreign genetic material of the virus, copy a section of the viral DNA into siRNA and use it as a ‘specificity determinant’. The siRNA binds to the viral genetic material and, rather like hoisting a molecular flag to identify the marauder, causes a protein called Argonaute to bind and stop the virus from working.

“Just as our immune system can be primed by an infection so that we can fight it off quicker next time, plant cells retain the siRNA as a means of escalating the defence response next time the plant sees the invader,” explained Professor Baulcombe.

“Understanding this opens up the possibility of harnessing the process to protect plants against viral diseases – by furnishing the plant with the siRNA so that it is permanently and genetically able to fight off the disease even though it has never seen it.”

It turns out that the process is of interest not just as a means of protecting crops from pathogens but also because, in modern plants, RNA silencing has diversified into a mechanism that protects them from the effects of ‘selfish’ DNA. This process appears to lie at the heart of hybrid vigour.

Releasing latent potential

Over millions of years, plants have acquired pieces of junk DNA – some are the relics of past viral infections, others are moveable elements capable of ‘jumping’ around the genome; all are termed selfish because, depending on where they end up, the junk DNA can activate or suppress genes. use RNA silencing to shut down the selfish DNA in their genomes.

“We now realise that because different varieties of the same plant have different selfish DNA and different siRNAs to combat it, this could be one mechanism for explaining the mysteries of hybrid vigour,” said Professor Baulcombe. “Crossing two varieties results in a mix of siRNA that is different to that of either parent. In some cases, the new mix optimally turns the right combination of genes on and off and results in an offspring that is better than either parent.”

With funding from the Biotechnology and Biological Sciences Research Council, European Union, Royal Society and Gatsby Charitable Foundation, and the benefit of newly available DNA sequences of many crops, Professor Baulcombe’s team are beginning to exploit this new understanding by predicting which mix of siRNA will produce the improved offspring.

Within their sights is a glimpse of how future plant breeding could change dramatically, by being able to predict on an unprecedented molecular scale how breeders can improve crops by unlocking the latent potential in plant genomes.

Explore further: Improving the productivity of tropical potato cultivation

add to favorites email to friend print save as pdf

Related Stories

Soil bacteria plant bodyguards against fungal infections

May 12, 2011

With up to 33,000 ‘taxa’, plant roots are home to an unprecedentedly large diversity of bacteria. Some of these bacteria can function as a type of bodyguard for plants, protecting them against infection ...

People also have antiviral 'plant defences'

Sep 27, 2010

In addition to known antiviral agents such as antibodies and interferons, people also seem to have a similar immune system to that previously identified in plants. This is the result of research carried out by Esther Schnettler ...

Recommended for you

Building better soybeans for a hot, dry, hungry world

8 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

9 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

23 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Adventurous bacteria

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...