The wonders of graphene on display

Jul 05, 2011

Graphene, discovered in 2004 at The University of Manchester by Professor Andre Geim and Professor Kostya Novoselov, is one of the world's most versatile materials, and is already being used in such varied applications as touch screens, transistors and aircraft wings.

Researchers from the University are presenting the vast potential of the wonder material at the Royal Society's annual Summer Science Exhibition which opens today (5 July 2010).

The display aims to tell the remarkable story of the discovery of graphene, and how Professors Geim and Novoselov realised the full significance of their work – culminating in the award of the 2010 Nobel Prize for Physics.

The pair, who have worked together for more than a decade since Professor Novoselov was Professor Geim's PHD student, used to devote every Friday evening to 'out of the box' experiments not directly linked to their main research topics.

One Friday, they used Scotch tape to peel away layers of carbon from a piece of graphite, and were left with a single atom thick, two dimensional film of carbon – graphene.

Visitors will be given the chance to learn what a two dimensional material looks like using simple models, and to make graphene themselves.

In an interactive display called the Virtual Microscope visitors will be able to see real images of graphene, originally obtained in one of the world's most advanced Transmission Electron Microscopes (TEM), the Daresbury SuperSTEM.

The high magnifications that can be achieved in this instrument allow direct observation of the atomic lattice of graphene, in its perfect state, but also with defects and foreign atoms, unintentionally or deliberately introduced. The SuperSTEM images have been implemented in the Virtual Microscope in a way that allows zooming into areas of interest like in the real instrument.

The material, which resembles a "chicken wire" like structure and was previously thought to be unstable in its free form, is very strong, transparent and highly conductive.

Many of its properties are unique or far superior to those in other materials, which make it such an exciting new material to study.

Charge carriers in graphene appear to have no mass and can travel very large distances without being scattered. This makes it a good testing ground for interesting quantum effects and gives it many applications for fast electronics. It is extremely transparent and being such a good electrical conductor makes it an ideal transparent electrode in LCD displays and solar cells.

The researchers have also made gas sensors from several times smaller than a hair's width and so sensitive they can detect when a single gas molecule is present on them.

It makes an extremely strong support membrane for observing biological molecules in a Transmission Electron Microscope and is so electron transparent even individual metal atoms can be seen on its surface, which visitors can experience for themselves in the virtual TEM. It is the strongest material found so far, which can be used to make ultra-strong, conductive composite materials.

The exhibit will also feature entertaining and educational iPad games, which can also be downloaded for iOS and Android devices from their respective app stores.

One of the exhibitors, Dr Ernie Hill, said: "This is a great opportunity for us to present some of our groundbreaking work to the general public in what we hope is an interesting and entertaining way.

"The story of how Andre and Kostya produced this remarkable material is inspirational for any youngster wishing to enter research as a career and indeed to anyone with an interest in scientific discovery."

The scientists will be on hand at the exhibition which runs from 5 July to 10 July, to talk visitors through the research.

Explore further: Tiny wires could provide a big energy boost

Related Stories

Professor scoops top prize for 2D atomic crystals discovery

Oct 19, 2006

Professor Andre Geim of the School of Physics and Astronomy has been awarded the 2007 Mott Medal and Prize by the Institute of Physics for his ground-breaking work. The research of Professor Geim, Dr Kostya Novoselov and ...

Graphene makes light work of aircraft design

Jun 08, 2010

(PhysOrg.com) -- Faster and lighter aircraft could be built using an incredible super-thin material just one atom thick, according to new research conducted at The University of Manchester.

The flattest material in the world

Oct 06, 2010

The Nobel Prize for physics goes to Andre Geim and Konstantin Novoselov, both Russian-born physicists now working at the University of Manchester in the U.K., for their discovery of graphene. ...

Recommended for you

Tiny wires could provide a big energy boost

16 hours ago

Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough ...

Graphene sheets enable ultrasound transmitters

17 hours ago

University of California, Berkeley, physicists have used graphene to build lightweight ultrasonic loudspeakers and microphones, enabling people to mimic bats or dolphins' ability to use sound to communicate ...

Project uses crowd computing to improve water filtration

Jul 06, 2015

Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. ...

Engineering the world's smallest nanocrystal

Jul 06, 2015

In the natural world, proteins use the process of biomineralization to incorporate metallic elements into tissues, using it to create diverse materials such as seashells, teeth, and bones. However, the way ...

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.