The wonders of graphene on display

Jul 05, 2011

Graphene, discovered in 2004 at The University of Manchester by Professor Andre Geim and Professor Kostya Novoselov, is one of the world's most versatile materials, and is already being used in such varied applications as touch screens, transistors and aircraft wings.

Researchers from the University are presenting the vast potential of the wonder material at the Royal Society's annual Summer Science Exhibition which opens today (5 July 2010).

The display aims to tell the remarkable story of the discovery of graphene, and how Professors Geim and Novoselov realised the full significance of their work – culminating in the award of the 2010 Nobel Prize for Physics.

The pair, who have worked together for more than a decade since Professor Novoselov was Professor Geim's PHD student, used to devote every Friday evening to 'out of the box' experiments not directly linked to their main research topics.

One Friday, they used Scotch tape to peel away layers of carbon from a piece of graphite, and were left with a single atom thick, two dimensional film of carbon – graphene.

Visitors will be given the chance to learn what a two dimensional material looks like using simple models, and to make graphene themselves.

In an interactive display called the Virtual Microscope visitors will be able to see real images of graphene, originally obtained in one of the world's most advanced Transmission Electron Microscopes (TEM), the Daresbury SuperSTEM.

The high magnifications that can be achieved in this instrument allow direct observation of the atomic lattice of graphene, in its perfect state, but also with defects and foreign atoms, unintentionally or deliberately introduced. The SuperSTEM images have been implemented in the Virtual Microscope in a way that allows zooming into areas of interest like in the real instrument.

The material, which resembles a "chicken wire" like structure and was previously thought to be unstable in its free form, is very strong, transparent and highly conductive.

Many of its properties are unique or far superior to those in other materials, which make it such an exciting new material to study.

Charge carriers in graphene appear to have no mass and can travel very large distances without being scattered. This makes it a good testing ground for interesting quantum effects and gives it many applications for fast electronics. It is extremely transparent and being such a good electrical conductor makes it an ideal transparent electrode in LCD displays and solar cells.

The researchers have also made gas sensors from several times smaller than a hair's width and so sensitive they can detect when a single gas molecule is present on them.

It makes an extremely strong support membrane for observing biological molecules in a Transmission Electron Microscope and is so electron transparent even individual metal atoms can be seen on its surface, which visitors can experience for themselves in the virtual TEM. It is the strongest material found so far, which can be used to make ultra-strong, conductive composite materials.

The exhibit will also feature entertaining and educational iPad games, which can also be downloaded for iOS and Android devices from their respective app stores.

One of the exhibitors, Dr Ernie Hill, said: "This is a great opportunity for us to present some of our groundbreaking work to the general public in what we hope is an interesting and entertaining way.

"The story of how Andre and Kostya produced this remarkable material is inspirational for any youngster wishing to enter research as a career and indeed to anyone with an interest in scientific discovery."

The scientists will be on hand at the exhibition which runs from 5 July to 10 July, to talk visitors through the research.

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

Professor scoops top prize for 2D atomic crystals discovery

Oct 19, 2006

Professor Andre Geim of the School of Physics and Astronomy has been awarded the 2007 Mott Medal and Prize by the Institute of Physics for his ground-breaking work. The research of Professor Geim, Dr Kostya Novoselov and ...

Graphene makes light work of aircraft design

Jun 08, 2010

(PhysOrg.com) -- Faster and lighter aircraft could be built using an incredible super-thin material just one atom thick, according to new research conducted at The University of Manchester.

The flattest material in the world

Oct 06, 2010

The Nobel Prize for physics goes to Andre Geim and Konstantin Novoselov, both Russian-born physicists now working at the University of Manchester in the U.K., for their discovery of graphene. ...

Recommended for you

Thinnest feasible nano-membrane produced

20 hours ago

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

22 hours ago

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

LADEE mission ends with planned lunar impact

(Phys.org) —Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface ...