Graphene's 'quantum leap' takes electronics a step closer

Jul 24, 2011

(PhysOrg.com) -- Writing in the journal Nature Physics, the academics, who discovered the world's thinnest material at The University of Manchester in 2004, have revealed more about its electronic properties.

Research institutes and universities around the world are already looking at ways to build devices such as touch-screens, ultrafast and .

Now the research from the creators of the material promises to accelerate that research, and potentially open up countless more electronic opportunities.

The researchers, from the universities of Manchester, Madrid and Moscow, have studied in detail the effect of interactions between electrons on the electronic properties of graphene.

They use extremely high-quality graphene devices which are prepared by suspending sheets of graphene in a .

This way most of the unwanted scattering mechanisms for electrons in graphene could be eliminated, thus enhancing the effect of electron-on-electron interaction.

This is the first effect of its kind where the interactions between electrons in graphene could be clearly seen.

The reason for such unique electronic properties is that electrons in this material are very different from those in any other metals. They mimic massless relativistic particles – such as photons.

Due to such properties graphene is sometimes called 'CERN on a desk' – referencing the Large Hadron Collider in Switzerland. This is just one of the reasons why the electronic properties are particularly exciting and often bring surprises.

Professor Geim and Professor Novoselov's pioneering work won them the Nobel Prize for Physics in 2010 for "groundbreaking experiments regarding the two-dimensional material graphene".

The pair, who have worked together for more than a decade since Professor Novoselov was Professor Geim's PHD student, used to devote every Friday evening to 'out of the box' experiments not directly linked to their main research topics.

One Friday, they used Scotch tape to peel away layers of carbon from a piece of graphite, and were left with a single atom thick, two dimensional film of carbon – graphene.

Graphene is a novel two-dimensional material which can be seen as a monolayer of carbon atoms arranged in a hexagonal lattice.

Graphene's 'quantum leap' takes electronics a step closer

It possesses a number of unique properties, such as extremely high electron and thermal conductivities due to very high velocities of and high quality of the crystals, as well as mechanical strength.

Professor Novoselov said: "Although the exciting physics which we have found in this particular experiment may have an immediate implementation in practical electronic devices, the further understanding of the of this material will bring us a step closer to the development of electronics."

Professor Geim added: "The progress have been possible due to quantum leap in improvement of the sample quality which could be produced at The University of Manchester."

Explore further: Physicists heat freestanding graphene to control curvature of ripples

More information: "Dirac cones reshaped by interaction effects in suspended graphene", by D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea and A. K. Geim, Nature Physics.

Related Stories

The wonders of graphene on display

Jul 05, 2011

Graphene, discovered in 2004 at The University of Manchester by Professor Andre Geim and Professor Kostya Novoselov, is one of the world's most versatile materials, and is already being used in such varied ...

Two graphene layers may be better than one

Apr 27, 2011

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology have shown that the electronic properties of two layers of graphene vary on the nanometer scale. The surprising new results ...

Professor scoops top prize for 2D atomic crystals discovery

Oct 19, 2006

Professor Andre Geim of the School of Physics and Astronomy has been awarded the 2007 Mott Medal and Prize by the Institute of Physics for his ground-breaking work. The research of Professor Geim, Dr Kostya Novoselov and ...

A huge step toward mass production of graphene

Mar 10, 2010

Scientists have leaped over a major hurdle in efforts to begin commercial production of a form of carbon that could rival silicon in its potential for revolutionizing electronics devices ranging from supercomputers ...

Recommended for you

Twisted graphene chills out

Sep 17, 2014

(Phys.org) —When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown.

Researchers use liquid inks to create better solar cells

Sep 17, 2014

(Phys.org) —The basic function of solar cells is to harvest sunlight and turn it into electricity. Thus, it is critically important that the film that collects the light on the surface of the cell is designed ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Vendicar_Decarian
2.2 / 5 (5) Jul 24, 2011
Man words...

0 content.
nicknick
not rated yet Jul 25, 2011
>> They use extremely high-quality graphene devices which are
>> prepared by suspending sheets of graphene in a vacuum.

>> This way most of the unwanted scattering mechanisms for
>> electrons in graphene could be eliminated, thus enhancing
>> the effect of electron-on-electron interaction.

Very interesting for the quantum physicists, but it does not look practical for the semiconductor engineer.