Researchers flip the switch between development and aging in C. elegans

Jul 05, 2011

When researchers at the Buck Institute dialed back activity of a specific mRNA translation factor in adult nematode worms they saw an unexpected genome-wide response that effectively increased activity in specific stress response genes that could help explain why the worms lived 40 percent longer under this condition. The study, appearing in the July 6, 2011 edition of Cell Metabolism, highlights the importance of mRNA translation in the aging process. mRNA translation occurs after genetic messages have been transcribed in cells, when the encoded messages of genes are actually translated into functional proteins.

"This study gives us a much more comprehensive picture of the aging process," said Buck faculty Pankaj Kapahi, PhD, the principle investigator of the study. "Our work may help explain the relationship between development and aging."

Scientists have identified a number of so-called "longevity" genes active in many species. However, the mechanisms by which those genes impact lifespan remain poorly understood. According to Kapahi, the majority of research involving those genes has focused on transcription, the first level of whereby DNA produces RNA. This research focuses on translation, whereby RNA specifies the production of proteins.

First-author Aric N. Rogers, Ph. D., a Buck Institute postdoctoral fellow, inhibited expression of the mRNA translation factor, IFG-1, in adult worms. IFG-1 is important for growth and development, and has a homolog (eIF4G) in humans.. According to Rogers turning down IFG-1 right after the animals reached maturity set off a genome-wide change in the type of messages that were being translated. He said this causes a shift towards increased somatic maintenance by increasing the activity of genes involved in stress responses thereby enhancing longevity. Rogers said. "Turning down ifg-1 expression flips a switch that turned down growth and reproduction, but increased their healthspan as well as their lifespan."

Analysis of genes that were upregulated and downregulated pointed to processed transcript length as a determinant of altered translation. The next phase of the research will involve a closer look at small conserved sequences within the genetic code that may also contribute to changes in protein expression"Our primary interest is to understand the biological basis of aging," said Kapahi. "This will help identify molecular targets that can be used to develop therapeutics that would slow age-related diseases and extend the healthy years of life."

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: Lifespan extension via eIF4G inhibition is mediated by post-transcriptional remodeling of stress response gene expression in C. elegans, Cell Metabolism.

Related Stories

'Anti-Atkins' low protein diet extends lifespan in flies

Oct 01, 2009

Flies fed an "anti-Atkins" low protein diet live longer because their mitochondria function better. The research, done at the Buck Institute for Age Research, shows that the molecular mechanisms responsible for the lifespan ...

New insights into cardiac aging

Sep 14, 2009

Investigators at Burnham Institute for Medical Research (Burnham) have found that the conserved protein d4eBP modulates cardiac aging in Drosophila (fruit flies). The team also found that d4eBP, which binds to the protein ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.