Faster 3D nanoimaging a possibility with full colour synchrotron light

July 1, 2011

Researchers can now see objects more precisely and faster at the nanoscale due to utilising the full colour spectrum of synchrotron light, opening the way for faster 3D nanoimaging.

This new methodology will provide for enhanced nanoimaging for studying bio samples for medical research, improved drug development and for engineering.

Using the , a synchrotron facility in Chicago, USA, researchers from the ARC Centre of Excellence for Coherent X-ray Science (CXS), headquartered at the University of Melbourne, revealed that by utilizing the full spectrum of colours of the synchrotron, they increased the clarity of and obtained a 60-fold increase in the speed of imaging.

Professor Keith Nugent, Laureate Professor of Physics at the University of Melbourne and Research Director of CXS, said the discovery was an exciting development.

“Typically for best imaging, researchers need to convert samples to crystals, but this is not always possible in all samples,” he said.

“This discovery of utilising full colour synchrotron light to improve precision and speed of imaging has huge potential in the field,” he said.

The international project was led by Dr Brian Abbey of the University of Melbourne’s School of Physics and CXS, whose team made the discovery.

“We will now be able to see things in detail at the nanoscale much more easily. It is like going from an old film camera to the latest digital SLR.’
“The increase in speed, in particular, opens the way for us to see things faster in 3D at the , which has previously taken an impracticably long time,” Dr Abbey said.

The paper was published in the international journal Nature Photonics.

Explore further: Synchrotron could help save the Tassie devil

Related Stories

Synchrotron could help save the Tassie devil

August 1, 2007

Dr Church says he will use the synchotron to see if the disease causes any biochemical changes in the devils which could be detected in their hair before the disease becomes apparent.

Synchrotron could help save the Tassie devil

September 29, 2008

(PhysOrg.com) -- Australia’s new $A200m synchrotron in Melbourne could contribute to the fight to save the Tasmanian devil from the outbreak of facial tumour disease currently decimating devil populations, according to ...

Bilinguals get the blues

March 15, 2011

(PhysOrg.com) -- Learning a foreign language literally changes the way we see the world, according to new research.

Recommended for you

New material science research may advance tech tools

August 31, 2015

Hard, complex materials with many components are used to fabricate some of today's most advanced technology tools. However, little is still known about how the properties of these materials change under specific temperatures, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.