Fast-shrinking Greenland glacier experienced rapid growth during cooler times

July 14, 2011

Large, marine-calving glaciers have the ability not only to shrink rapidly in response to global warming, but to grow at a remarkable pace during periods of global cooling, according to University at Buffalo geologists working in Greenland.

The conclusion stems from new research on Jakobshavn Isbrae, a tongue of ice extending out to sea from Greenland's west coast. Through an analysis of adjacent and plant fossils, the UB team determined that the glacier, which retreated about 40 kilometers inland between 1850 and 2010, expanded outward at a similar pace about 200 years ago, during a time of cooler temperatures known as the .

A paper detailing the results is in press and available online in Quaternary Science Reviews, a top peer-reviewed journal in the field.

"We know that Jakobshavn Isbrae has retreated at this incredible rate in recent years, and our study suggests that it advanced that fast, also," said Jason Briner, the associate professor of geology who led the research. His team included master's and PhD students from UB and Brown University.

"Our results support growing evidence that calving glaciers are particularly sensitive to climate change," Briner added.

Jakobshavn Isbrae has been the focus of intense scientific interest because it is one of the world's fastest-flowing glacier, releasing enormous quantities of Greenland's ice into the ocean. Changes in the rate at which icebergs calve off from the glacier could influence rise.

The decline of Jakobshavn Isbrae between 1850 and 2010 has been well-documented through and satellite photographs by UB Associate Professor of Geology Bea Csatho, which show the ice shrinking rapidly from west to east along a narrow fjord.

To reconstruct the glacier's advance from east to west during earlier, cooler years, Briner and his colleagues examined from Glacial Lake Morten and Iceboom Lake, two glacier-fed lakes that sit along the glacier's path of expansion.

As Jakobshavn Isbrae expanded seaward, it reached Glacial Lake Morten first, damming one side of the lake with ice and filling the basin, previously a tundra-covered valley, with meltwater.

To pinpoint the time in history when this happened, the researchers counted annual layers of overlying glacial sediments and used radiocarbon dating to analyze at the lake bottom (the last vestiges of the old tundra). The team's conclusion: Glacial Lake Morten formed between 1795 and 1800.

An analysis of sediment layers from the bottom of Iceboom Lake showed that Jakobshavn Isbrae reached Iceboom lake about 20 or 25 years later, around 1820.

Jakobshavn Isbrae's rate of expansion from Glacial Lake Morten to Iceboom Lake, as documented by the UB team, matched the glacier's rate of retreat between those two points. (Aerial imagery shows Iceboom Lake draining around 1965 and Glacial Lake Morten draining between 1986 and 1991.)

Explore further: NASA Study Finds Glacier Doing Double Time

More information: doi:10.1016/j.quascirev.2011.05.017

Related Stories

NASA Study Finds Glacier Doing Double Time

December 4, 2004

A NASA-funded study found the world's fastest glacier, Greenland's Jakobshavn Isbrae, doubled its speed of ice flow between 1997 and 2003. The study provides key evidence of newly discovered relationships between ice sheets, ...

Tasman Glacier retreat extreme

April 23, 2008

The Tasman Glacier is retreating faster than ever and will ultimately disappear, glaciologists at Massey University are warning.

Recommended for you

New study sheds light on end of Snowball Earth period

August 24, 2015

The second ice age during the Cryogenian period was not followed by the sudden and chaotic melting-back of the ice as previously thought, but ended with regular advances and retreats of the ice, according to research published ...

Earth's mineralogy unique in the cosmos

August 26, 2015

New research from a team led by Carnegie's Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Vendicar_Decarian
3 / 5 (2) Jul 14, 2011
This research is scheduled to be defunded on Aug 2, 2011

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.