Enceladus rains water onto Saturn

Jul 26, 2011
Enceladus rains water onto Saturn
At least four distinct plumes of water ice spew out from the south polar region of Saturn's moon Enceladus. Light reflected off Saturn is illuminating the moon while the sun, almost directly behind Enceladus, is backlighting the plumes. This view looks toward the Saturn-facing side of Enceladus (504 kilometers across). North is up. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Dec. 25, 2009. The view was obtained at a distance of approximately 617,000 kilometers from Enceladus and at a Sun-Enceladus-spacecraft, or phase, angle of 174 degrees. Image scale is 4 kilometers per pixel. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. Credits: NASA/JPL/Space Science Institute

(PhysOrg.com) -- ESA's Herschel space observatory has shown that water expelled from the moon Enceladus forms a giant torus of water vapour around Saturn. The discovery solves a 14-year mystery by identifying the source of the water in Saturn’s upper atmosphere.

Herschel’s latest results mean that Enceladus is the only moon in the Solar System known to influence the chemical composition of its parent planet.

Enceladus expels around 250 kg of vapour every second, through a collection of jets from the south polar region known as the Tiger Stripes because of their distinctive surface markings.

These crucial observations reveal that the water creates a doughnut-shaped torus of vapour surrounding the ringed planet.

The total width of the torus is more than 10 times the radius of Saturn, yet it is only about one Saturn radius thick. Enceladus orbits the planet at a distance of about four Saturn radii, replenishing the torus with its jets of water.  

Despite its enormous size, it has escaped detection until now because water vapour is transparent to visible light but not at the infrared wavelengths was designed to see.

Herschel, the largest infrared space telescope, is stationed at the second Lagrange point of the Sun-Earth system. Its 3.5-metre diameter collects long-wavelength infrared radiation from some of the coolest and most distant objects in the Universe. Herschel covers a wide range of wavelengths, from far-infrared to sub-millimetre. The longest of these wavelengths have not been covered before. The satellite was launched on 14 May 2009 with ESA's Planck microwave observatory, on board an Ariane 5 from Europe's Spaceport in Kourou, French Guiana. Credits: ESA - D. Ducros, 2009

Saturn's is known to contain traces of gaseous water in its deeper layers. A particular enigma has been the presence of water in its upper atmosphere.

First reported in 1997 by teams using ESA’s Infrared Space Observatory, the source of this water was unknown until now. Computer models of these latest Herschel observations show that about 3-5% of the water expelled by Enceladus ends up falling into Saturn.

“There is no analogy to this behaviour on Earth,” says Paul Hartogh, Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany, who led the collaboration on the analysis of these results.
 
“No significant quantities of water enter our atmosphere from space. This is unique to Saturn.”

Although most of the water from Enceladus is lost into space, freezes on the rings or perhaps falls onto Saturn’s other moons, the small fraction that does fall into the planet is sufficient to explain the water observed in its upper atmosphere.

It is also responsible for the production of additional oxygen-bearing compounds, such as carbon dioxide.

Ultimately, water in Saturn's upper atmosphere is transported to lower levels, where it will condense but the amounts are so tiny that the resulting clouds are not observable.

“Herschel has proved its worth again. These are observations that only Herschel can make,” says Göran Pilbratt, ESA Herschel Project Scientist.

“ESA’s Infrared found the in ’s atmosphere. Then NASA/ESA’s Cassini/Huygens mission found the jets of Enceladus. Now Herschel has shown how to fit all these observations together.”

Explore further: NASA: Engineer vital to 1969 moon landing dies

Related Stories

Enceladus leaves plasma bubbles in its wake

Apr 15, 2010

(PhysOrg.com) -- Observations of how Saturn’s moon Enceladus interacts with its environment show it leaves a complex pattern of ripples and bubbles in its wake. Sheila Kanani will be presenting the results ...

The secrets of Saturn's moons

Apr 13, 2010

(PhysOrg.com) -- Saturn's moons have become a source of increasing fascination thanks to a stream of data from the Cassini-Huygens spacecraft.

Rings on the horizon

Jan 26, 2011

The Cassini spacecraft has taken a some recent images of two of Saturn’s most notorious moons, where in both images the planet’s rings serve as a backdrop. Above, Enceladus stands out with its cratered ...

Recommended for you

NASA's space station Robonaut finally getting legs

16 hours ago

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Sun emits a mid-level solar flare

Apr 18, 2014

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...

Impact glass stores biodata for millions of years

Apr 18, 2014

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

The importance of plumes

Apr 18, 2014

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...