Embracing superficial imperfections

Jul 01, 2011
Figure 1: Defects inside an ultrathin magnesium oxide film (red and blue spheres, bottom) accumulate electronic charges (red and blue contour map) and enhance the catalytic dissociation of water molecules (top). Credit: 2011 Yousoo Kim

Chemists normally work rigorously to exclude impurities from their reactions. This is especially true for scanning tunneling microscopy (STM) experiments that can produce atomic-scale images of surfaces. Using STM to investigate processes such as catalysis usually requires pristine substrates—any flaws or foreign particles in the surface can critically interfere with the test study. Preconceptions about interface defects and catalysis are about to change, however, thanks to recently published research led by Yousoo Kim and Maki Kawai at the RIKEN Advanced Science Institute in Wako, Japan.

Through a series of high-level computer simulations, the researchers found that the catalytic splitting of water molecules occurs faster on an ultrathin insulating film containing misplaced atoms than on a non-defective . Because water splitting reactions are one of the easiest ways to generate hydrogen fuel, this finding could be a boon to future fleets of hybrid vehicles.

Recently, Kim, Kawai, and colleagues discovered that depositing insulating magnesium oxide (MgO) onto a silver (Ag) substrate enabled extraordinary control over water dissociation reactions. By injecting electrons into the MgO/Ag surface with an tip, they were able to excite absorbed water molecules and cause them to sever hydrogen and hydroxide ions. Optimizing the MgO film thickness was a key part of this approach; only ultrathin layers could direct water splitting owing to its enhanced electronic interaction strength. 

This relationship between insulator thickness and chemical reactivity suggested to the researchers that the oxide–metal interface plays a crucial role in directing catalytic reactions. Engineering specific flaws into the ultrathin interface could be one way to heighten the electronic control over the water-splitting process. However, since artificially manipulating oxide atoms is a difficult experimental procedure, they used density functional theory simulations, based on quantum mechanics, to analyze the role of structural imperfections in MgO.

Surprisingly, the researchers found that three different types of defects—oxygen and magnesium , as well as an oxygen vacancy—improved water adsorption and substantially lowered dissociation energy barriers compared to an ideal MgO film. Further analysis revealed that the oxide defects accumulate charges injected into the substrate (Fig. 1), creating an electronic environment that speeds up the catalytic splitting. “In the presence of these defects, the film’s chemical reactivity can be greatly enhanced,” says Kim.

The next goal for the researchers is to find systematic techniques to control interface imperfections on these novel catalytic films—an objective best achieved by the team’s unique combined experimental–theoretical approach, notes Kim.

Explore further: Researchers develop new storage cell for solar energy storage, nighttime conversion

More information:

1. Jung, J., et al. Activation of ultrathin oxide films for chemical reaction by interface defects. Journal of the American Chemical Society 133, 6142–6145 (2011). 

2. Shin, H.-J., et al. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Materials 9, 442–447 (2010).

3. Jung, J., et al. Controlling water dissociation on an ultrathin MgO film by tuning film thickness. Physical Review B 82, 085413 (2010).

Related Stories

How to split a water molecule

Apr 18, 2010

(PhysOrg.com) -- A research team at RIKEN, Japan’s flagship research organization has succeeded for the first time in selectively controlling for reaction products in the dissociation of a single water molecule ...

Solving single molecule mobility

Oct 18, 2010

Nanotechnologists assemble intricate nanodevices, such as computer chips, molecule by molecule using ‘bottom-up’ techniques that mirror nature. One approach shuttles molecules along surfaces into ...

Metal particle generates new hope for H2 energy

Jun 28, 2011

(PhysOrg.com) -- Tiny metallic particles produced by University of Adelaide chemistry researchers are bringing new hope for the production of cheap, efficient and clean hydrogen energy.

Recommended for you

Metal encapsulation optimizes chemical reactions

12 hours ago

The chemical industry consumes millions of tons of packing materials as catalytic sup- port media or adsorbents in fixed-bed reactors and heat storage systems. Fraunhofer researchers have developed a means of encapsulating ...

Fuel and chemicals from steel plant exhaust gases

12 hours ago

Carbon monoxide-rich exhaust gases from steel plants are only being reclaimed to a minor extent as power or heat. Fraunhofer researchers have developed a new recycling process for this materially unused carbon resource: They ...

Self-assembly of molecular Archimedean polyhedra

13 hours ago

Chemists truly went back to the drawing board to develop new X-shaped organic building blocks that can be linked together by metal ions to form an Archimedean cuboctahedron. In the journal Angewandte Chemie, the sc ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.